Nanotechnology for Mitigating Impact of COVID-19

  • Gagan Kant Tripathi School of Nanotechnology, Rajiv Gandhi ProudyogikiVishwavidyalaya (RGPV), Bhopal (IN)
  • Harshit Rathore Excubator Consulting Private Limited. Bengaluru, Karnataka 560102 India (IN)
  • Murthy Chavali PG Department of Chemistry, Dharma Appa Rao College (DARC), Nuzvid 521201 KrishnaDistrict, Andhra Pradesh, INDIA & NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur District, AndhraPradesh, INDIA (IN)
  • Deepshikha Rathore Amity School of Applied Sciences, Amity University Rajasthan, Jaipur 303002 India (IN)
Keywords: COVID-19, nanoparticles, disaster, transmission, diagnosis

Viewed = 316 time(s)


This review article aims to create awareness towards COVID-19 epidemic and develop a basic responsibility in human beings to control and stop the transmission of COVID-19. It has been highlighted that disaster is imminent if we play with nanostructures unknowingly. The effect of COVID-19 on mankind and its detection and transmission have also been discussed briefly. The protection guidelines including treatment procedures have been illustrated. The utilization of nanoparticles to detect and cure COVID-19 has been described.


Download data is not yet available.

References (April 2020)

Georg Behrens and Matthias Stoll, “Pathogenesis and Immunology”, in Influenza Report,

Prachi Singh and DeepshikhaRathore, “A biosensor system using nickel ferrite nanoparticles”, AIP Conference Proceedings, 1728, 20259 (2016).

DeepshikhaRathore, R. Kurchania and R. K. Pandey, “Gas Sensing Properties of Size Varying CoFe2O4 Nanoparticles”, IEEE Sensors, 15, 4961-4966(2015).

DeepshikhaRathore, R. Kurchania and R. K. Pandey, “Fabrication of Ni1−xZnxFe2O4 (x = 0, 0.5 and 1) Nanoparticles Gas Sensor for Some Reducing Gases”, Sensors and Actuators A: Physical, 199, 236-240 (2013).

DeepshikhaRathore, R. Kurchania and R. K. Pandey, “Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor”, Journal of Materials Science: Materials in Electronics, 29 (3) 1925-1932(2018).

Mboowa, Gerald. "Current and emerging diagnostic tests available for the novel COVID-19 global pandemic." AAS Open Research 3, no. 8 (2020): 8.

Sivasankarapillai, Vishnu Sankar, Akhilash M. Pillai, Abbas Rahdar, Anumol P. Sobha, SabyaSachi Das, Athanasios C. Mitropoulos, MahboobehHeidariMokarrar, and George Z. Kyzas. "On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges." Nanomaterials 10, no. 5 (2020): 852.

Pastorino, Boris, Franck Touret, Magali Gilles, Xavier De Lamballerie, and Remi N. Charrel. "Evaluation of heating and chemical protocols for inactivating SARS-CoV-2." BioRxiv (2020).

Dzimitrowicz, A. Motyka-Pomagruk, P. Cyganowski et al., “Antibacterial activity of fructose-stabilized silver nanoparticles produced by direct current atmospheric pressure glow discharge towards quarantine pests,” Nanomaterials,8, no. 10, p. 751, 2018.

Aderibigbe BA. “Metal-Based Nanoparticles for the Treatment of Infectious Diseases”. Molecules. 2017;22(8):1370. Published 2017 Aug 18.

SreepriyaVelanki and Hai-FengJi “Detection of feline coronavirus using microcantilever sensors” Meas. Sci. Technol. 17 (2006) 2964–2968. doi:10.1088/0957-0233/17/11/015

GuangyuQiu, ZhiboGai, Yile Tao, Jean Schmitt, Gerd A. Kullak-Ublick, Jing Wang. Dual-Functional PlasmonicPhotothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano, 2020; DOI: 10.1021/acsnano.0c02439

Sato, Kimitoshi, Ji‐Guang Li, HidehiroKamiya, and TakamasaIshigaki. "Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension." Journal of the American Ceramic Society 91, no. 8 (2008): 2481-2487.

Tripathi, Gagan Kant, and RajnishKurchania. "Photocatalytic behavior of BiOX (X= Cl/Br, Cl/I and Br/I) composites/heterogeneous nanostructures with organic dye." Optical and Quantum Electronics 49, no. 6 (2017): 203.

Casadevall, A.; Pirofski, L.-A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548.

Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus–infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069.

Hui, D.S.; I. Azhar, E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266.

Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections—More than just the common cold. JAMA 2020, 323, 707–708.

Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 3, 237–261 (2016).

Nguyen, T., Duong Bang, D. & Wolff, A. 2019 Novel Coronavirus Disease (COVID-19): Paving the Road for Rapid Detection and Point-of-Care Diagnostics. Micromachines 11, 1–7 (2020).

Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.

Fauci, A.S.; Lane, H.C.; Redfield, R.R. Covid-19—Navigating the uncharted. N. Engl. J. Med. 2020, 382, 1268–1269.

de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534.

Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.

Sato, Kimitoshi, Ji‐Guang Li, HidehiroKamiya, and TakamasaIshigaki. "Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension." Journal of the American Ceramic Society 91, no. 8 (2008): 2481-2487.

Tripathi, Gagan Kant, and RajnishKurchania. "Photocatalytic behavior of BiOX (X= Cl/Br, Cl/I and Br/I) composites/heterogeneous nanostructures with organic dye." Optical and Quantum Electronics 49, no. 6 (2017): 203.

CormanVM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, van Boheemen S, Gopal R, Ballhause M, Bestebroer TM, Muth D, Muller MA, Drexler JF, Zambon M, Osterhaus AD, Fouchier RM, Drosten C. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17(39):1-6

BuddhishaUdugama, PranavKadhiresan, Hannah N. Kozlowski, Ayden Malekjahani, Matthew Osborne, Vanessa Y.C. Li, Hongmin Chen, Samira Mubareka, Jonathan Gubbay, and Warren C.W. Chan, “Diagnosing COVID-19: The Disease and Tools for Detection” ACS Nano, Just Accepted Manuscript • DOI: 10.1021/acsnano.0c02624 • Publication Date (Web): 30 Mar 2020

Min, W.F.; Huizhi, G.; Jessica, Y.W.; Jingyi, X.; Eunice, Y.C.S.; Sukhyun, R.; Benjamin, J.C. Non-pharmaceutical measures for pandemic influenza in non-healthcare settings-Social distancing measures. Emerg. Infect. Dis. J. 2020, 26, 976–984.

Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450.

Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).

Hebeish, A., M. H. El-Rafie, M. A. El-Sheikh, and Mehrez E. El-Naggar. "Nanostructural features of silver nanoparticles powder synthesized through the concurrent formation of the nanosized particles of both starch and silver." Journal of Nanotechnology 2013 (2013).

Tien, Der & Tseng, Kuo-Hsiung& Liao, Chih-Yu &Tsung, Tsing-Tshih. (2009). “Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study”. Journal of Alloys and Compounds. 473. 298-302.

S. P. Deshmukh, S. M. Patil, S. B. Mullani, and S. D. Delekar, “Silver nanoparticles as an effective disinfectant: a review,” Materials Science and Engineering: C.,97,954–965, 2019.

T. A. Jorge de Souza, L. R. Rosa Souza, and L. P. Franchi, “Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity,” Ecotoxicology and Environmental Safety,171,691–700, 2019.

Zagorovsky K, Chan WCW. A plasmonicDNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew. Chem. Int. Ed. doi:10.1002/anie.201208715 (2013)

C. Raison, ‘Gold nanoparticle-based diagnostic test for rapid diagnosis of leading infectious diseases’, Expert Rev MolDiagn. 2013 Apr;13(3):230.

Muhammad Ali Syed and S. Habib Ali Bukhari, ‘Gold Nanoparticle-Based Microbial Detection and Identification’ Journal of Biomedical Nanotechnology7, 1–9, 2011.

Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; et al. ‘Binding of blood proteins to carbon nanotubes reduces cytotoxicity’ Proc. Natl. Acad. Sci. USA,108,16968, 2011.

Saleh, T.; Bolhassani, A.; Shojaosadati, S.A.; Aghasadeghi, M.R. ‘MPG-based nanoparticle: An efficient deliverysystemforenhancingthepotencyofDNAvaccineexpressingHPV16E7’ Vaccine,33,3164–3170, 2015.

Wang, Z.L.‘Zinc oxide nanostructures: growth, properties and applications’ J. PhysCondens. Mat.,16,829–858, 2004.

Kim, R.O., Choi, J.S., Kim, B.C., Kim, W.K. ‘Comparative analysis of transcriptionalprofile changes in larval zebrafish exposed to zinc oxide nanoparticles and zinc sulfate’ B. Environ. Contam. Tox,98,183–189, 2017.

Sharma ID, TripathiGK, Sharma VK, Tripathi SN, Kurchania R, Kant C, Sharma AK, Saini KK. ‘One-pot synthesis of three bismuth oxyhalides (BiOCl, BiOBr, BiOI) and their photocatalytic properties in three different exposure conditions’Cogent Chemistry,1,1076371 (1-17) 2015.

Tripathi, Gagan Kant, K. K.Saini, and RajnishKurchania. ‘Synthesis of nanoplate bismuth oxychloride-a visible light active material’ Optics and Spectroscopy,119,656-663, 2015.

Tripathi, G.K. and Kurchania, R. ‘Effect of doping on structural, optical and photocatalytic properties of bismuth oxychloridenanomaterials’ Journal of Materials Science: Materials in Electronics,27, 5079-5088, 2016.

Tripathi, G.K., Sharma, I.D., Kant, C., Pandey, R.R., Saini, K.K. and Kurchania, R. ‘Characterization of the photocatalytic activity of bismuth oxychloride nanostructures’ Analytical Letters,49, 1452-1466, 2016.

Tripathi G. K. ‘Engineered Nanomaterials and TheirProperties: A Review’Biosci. Biotech. Res. Comm,12, 764-771, 2019.

Li,S.;He,P.;Dong,J.;Guo,Z.;Dai,L. ‘DNA – DirectedSelf-AssemblingofCarbon Nanotubes’ J.Am. Chem.Soc., 127, 14–15 2005.

Kim,J.S.;Sung,J.H.;Song,K.S.;Lee,J.H.;Kim,S.M.;Lee,G.H.;Ahn,K.H.;Lee,J.S.;Shin,J.H.;Park,J.D.;etal. ‘Persistent DNA Damage Measured by Comet Assay of Sprague Dawley Rat Lung Cells after Five Days of Inhalation Exposure and 1 Month Post-Exposure to Dispersed Multi-Wall Carbon Nanotubes (MWCNTs) Generated by New MWCNT Aerosol Generation System’Toxicol. Sci.,128,439–448, 2012.

Cho, W.-S.; Duffin, R.; Poland, C.A.; Duschl, A.; Oostingh, G.J.; MacNee, W.; Bradley, M.; Megson, I.L.; Donaldson, K. ‘Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs’Nanotoxicology,6,22–35, 2012.

Shvedova, A.A.; Kisin, E.; Murray, A.R.; Johnson, V.J.; Gorelik, O.; Arepalli, S.; Hubbs, A.F.; Mercer, R.R.; Keohavong, P.; Sussman, N.; et al. ‘Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis’ Am. J.Physiol. LungCell Mol. Physiol,295,552-565, 2008.

How to Cite
D. G. K. Tripathi, H. Rathore, M. Chavali, and D. Rathore, “Nanotechnology for Mitigating Impact of COVID-19”, J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 2, pp. 171-180, Oct. 2020.