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Abstract 

Implementation of PLS-SEM in educational research has developed significantly, but there are variations in the presentation of the 

analysis results. This study aims to provide practical understanding to researchers who intend to utilize PLS-SEM in multivariate 

analysis to enhance the recognition and validity of the resultant research outcomes using SmartPLS. This research is a literature 

study that conducts content analysis of relevant books and publications. The research results present PLS-SEM analysis using 

SmartPLS on reflective and formative research models with first-order and second-order approaches through measurement model 

evaluation (outer model) and structural model evaluation (inner model) with various criteria. Evaluation of the reflective 

measurement model consists of reflective indicator loadings, internal consistency reliability, convergent validity, and discriminant 

validity. The review of the formative measurement model consists of convergent validity, collinearity, and statistical significance 

of weights. The structural model evaluation consists of the collinearity test, significance value, f square, R square, Q square, 

SRMR, PLSpredict, and robustness checks. Therefore, this study can provide guidance using SmartPLS in conducting PLS-SEM 

analysis and presenting acceptable analysis results  
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1. Introduction* 

Statistical analysis has been an essential tool for educational science scholars. At first, researchers relied on analyzing 

one or two variables to understand data and the connections between them. Understanding the complex connections in 

current educational research requires advanced multivariate data analysis techniques. Multivariate analysis involves 

the application of statistical methods that simultaneously evaluate many variables, typically representing measures 

associated with individuals, corporations, events, processes, situations, and other things. The acquisition of these 

metrics often occurs through surveys or observations, which serve as primary data sources. However, they can also be 

from secondary databases (Hair et al., 2017). 

Multivariate data analysis encompasses several statistical procedures, with a particular emphasis on regression-based 

analytic techniques (Grech & Calleja, 2018). Nevertheless, these analytical procedures have constraints when 

formulating a basic model structure. They necessitate that all variables can be observed and assume that all variables 

are measured accurately (Berman, 1971; Groenwold & Dekkers, 2023; Haenlein & Kaplan, 2004; Poon & Tang, 

2002). As a result, researchers are utilizing structural modelling approaches (SEM), which enable the simultaneous 

modelling and estimation of intricate interactions among various dependent and independent variables. SEM 

combines statistical methods, such as factor analysis, regression analysis, and path analysis, to test the relationship 

between observed and latent variables in a single framework. SEM can investigate the complex relationship between 

an observed variable (which can be measured directly) and a latent variable. This method uses a measurement model 

(to examine the relationship between a latency variable and the observed indicator) and structural models (to test the 

relation between the latent variables). Researchers can test and develop more complex theoretical models through 

SEM by testing simultaneous relationships between existing variables. It allows for exploring the direct and indirect 

influences between the latent variables (Kwok et al., 2018; Sarstedt & Ringle, 2020).   
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The two primary methods that dominate structural equation modelling (SEM) are covariance-based SEM (CB-SEM) 

and partial least squares SEM (PLS-SEM). CB-SEM is employed to corroborate or refute the underlying theory and 

hypothesis, whereas PLS-SEM primarily concentrates on revealing the variability in the model's dependent variable 

(Dash & Paul, 2021). CB-SEM gained popularity primarily due to its capability to evaluate hypotheses formulated 

within a confirmatory model. Nevertheless, the inflexibility of CB-SEM, particularly in dealing with instances of 

non-normal data and complex models, gave rise to the development of PLS-SEM. PLS-SEM has evolved as a more 

flexible option to manage non-normal scenarios and assess formative and reflective research models, which CB-SEM 

cannot do (Hair et al., 2020). 

Despite the flexibility offered by PLS-SEM, several research studies utilizing this method demonstrate variations in 

the assessment of structures and the quality of structural models (Bayonne et al., 2020; Zeng et al., 2021). In order to 

address these disparities and enhance the accuracy of study findings, it is imperative to establish explicit criteria for 

the standardized presentation of research reports utilizing PLS-SEM. This study aims to provide practical 

understanding to researchers who intend to utilize PLS-SEM in multivariate analysis to enhance the recognition and 

validity of the resultant research outcomes using SmartPLS software. This study provides a thorough and detailed 

examination of the principles, practical uses, and theoretical comprehension of PLS-SEM for multivariate analysis, 

thereby offering a noteworthy addition to scientific research in the field of multivariate analysis.  

2. Research Methods 

This study is a library study that utilizes information from many library sources, including books, literature, and 

documents on the subject under examination. This data-gathering method explicitly targets the comprehension and 

examination of information in scientific literature pertinent to study subjects (Elo et al., 2014; George, 2008). Within 

PLS-SEM research, the library's examination will entail conducting thorough searches and gathering material that 

comprehensively evaluates PLS-SEM and its implementations in multivariate analysis. This procedure allows 

researchers to investigate PLS-SEM's theory and fundamental principles and analyze approaches used in prior 

research. Data analysis involves employing a content analysis strategy, which employs a set of methodologies to 

evaluate and draw conclusions from books or other relevant publications. Content analysis is a method to extract 

relevant information from scientific publications (Slocum & Rolf, 2021). It involves identifying patterns, significant 

findings, and key concepts related to PLS-SEM in multivariate analysis within the social sciences.   

3. Results and Discussion 

3.1 Understanding of SEM analysis  

SEM is a multivariate statistical analysis technique used to analyze the structural relationships between measured 

variables and latent constructions. SEM includes confirmation factor analysis to assess measurement models, path 

analysis to evaluate structural models, and enables estimation of relations between latent variables after considering 

measurement errors. SEM provides a framework for testing the hypothesis of the relationship between observed 

variables and latent variables, which allows researchers to test complex models with multiple paths and inter-variable 

correlations. SEM is based on two fundamental concepts: latent variables and measurement models. Latent variables 

are unobserved constructs that are not directly measurable but are inferred from observed variables. Latent variables 

are represented in SEM as ovals or circles. Measurement models specify the relationships between latent variables and 

their observable indicators. These models describe how the observed variables measure the latent variable. 

Measurement models are represented in SEM as rectangles or squares (Hair et al., 2017).  

SEM tests theoretical models for exploration and confirmation purposes, accommodating reflective and formative 

constructions. SEM also accommodates complex model structures, such as mediation moderation, and allows for 

model-matching assessments. There are two approaches in SEM analysis: CB-SEM and PLS-SEM. CB-SEM focuses 

on testing and confirming the theory, which requires a large sample size and data normality. CB-SEM estimates 

model parameters by minimizing the difference between the model's observed and implied covariance matrix. PLS-

SEM is used for theoretical development, allowing small samples and formative measurements. PLS-SEM maximizes 

the described variance of the dependent construction and does not impose strict data requirements  (Hair et al., 2018). 
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3.2 Reasons for Using PLS-SEM 

PLS-SEM is a statistical method that estimates partial model structures by combining principal components analysis 

with ordinary least squares regressions. In this context, the researcher must explain the fundamental reasons for using 

PLS-SEM analysis in the research methodology. 

1. Research Design. 

The researcher describes the type of research and approach used according to research objectives. Researchers ensure 

that the research objectives are relevant for using PLS-SEM analysis. PLS-SEM is variance-based, accounting for a 

total variance to estimate parameters, and is suitable for exploratory research, mainly when the research goal is 

prediction and theory development (Hair et al., 2017).  

2. Population and sample.  

The research population and sample should involve identifying the target population from which data will be 

collected and selecting a representative part of that population as the research sample. It is essential to clearly define 

the population of interest based on the research objectives and scope of the study. The sample must represent the 

population to ensure that the findings can be generalized back to the population. The size and characteristics of the 

sample are critical to the validity and generalizability of the research results (Creswell, 2013; Creswell & Creswell, 

2018; Djamba & Neuman, 2014; Tuckman & Harper, 2012). PLS-SEM can be used for small sample sizes but is also 

suitable for large ones. It depends on the complexity of the model and the number of indicators and constructs being 

analyzed. A good sample size in PLS-SEM should be determined based on the specific characteristics of the model, 

the nature of the research objectives, and the statistical power required to obtain reliable and valid results.  

Researchers should consider these factors carefully and conduct appropriate analysis to ensure that the sample size is 

adequate for PLS-SEM analysis. Small samples tend to result in the assumption of data normality distribution not 

being met, but PLS-SEM can overcome this through bias-corrected and accelerated (BCa) bootstrapping routines 

(Hair et al., 2019).  Hair et al. (2021) explain that there is no identification issue when using a small sample, but the 

larger sample size will increase the precision and consistency of the PLS-SEM estimate. Kock and Hadaya (2018) 

suggest using the gamma exponential and inverse square root methods to get the minimum sample size. If a statistical 

test strength of 80% with levels of minimum path coefficients 0.41-0.5 and significant levels of 1%, 5%, and 10%, 

the minimum sample size in PLS-SEM is 41, 24, and 19, respectively. The same thing if a statistical test strength of 

80% with levels of minimum path coefficients 0.21-0.3 and significant levels of 1%, 5%, and 10%; the minimum 

sample size in PLS-SEM is 251, 155, and 113, respectively (Hair et al., 2021). In addition to explaining the 

population, sample, and sample size, researchers must also convey the techniques used for data collection clearly and 

precisely to obtain samples that are in accordance with the research objectives. Table 1 shows the minimum sample 

size requirement for different significance levels and varying ranges of pmin. 

Table 1. Minimum sample sizes for PLS-SEM 

Path Coefficients (pmin) Significance level 

1% 5% 10% 

0.05 - 0.1 1004 619 451 

0.11 - 0.2 251 155 113 

0.21 - 0.3 112 69 51 

0.31 - 0.4 63 39 29 

0.41 - 0.5 41 25 19 

Source: Hair et al. (2021:18)  

3. Research Variables.  

Researchers identify research variables, operational definitions of research variables used, and describe the 

constellation of research variables that demonstrate complex research models (Hair et al., 2018). PLS-SEM can 

measure complex research models to test the relationship between several independent, dependent, mediating, or 

moderator variables to analyze higher constructs with first-order or second-order analysis through a reflective or 

formative model approach. It is important to note that the choice between reflective and formative measurement 

models depends on the theoretical understanding of the measured construct (Hair et al., 2019). The choice of 

measurement model has implications for the interpretation of the results and the validity of the measurement model. 

Therefore, researchers should carefully consider the theoretical underpinnings of their constructs before deciding on 

the measurement model to use. A reflective measurement model assumes the construct itself causes the indicators of a 
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latent construct. The indicators are expected to be highly correlated with the construct they measure. A formative 

measurement model assumes that the indicators of a latent construct form the construct itself. The indicators are 

anticipated to exhibit lower levels of correlation with each other and the construct they intend to test. 

4. Research data sources.  

Researchers write research data sources that will explain the research instruments and measurement scales used. In 

PLS-SEM analysis, primary and secondary data sources are two types of data that can be used to operationalize the 

constructs in the model. It is important to note that the choice between primary and secondary data sources depends 

on the research objectives and data availability (Hair et al., 2021). Primary data refers to data specially gathered for 

the current study endeavor. Data can be collected through various techniques such as surveys, interviews, 

experiments, or observations. Secondary data, in contrast, refers to data gathered for a purpose apart from the current 

research endeavor. The data can be sourced from several sources, such as company databases, social media platforms, 

customer tracking systems, national statistical bureaus, or publically accessible survey data. 

5. Instrument Testing 

In several cases in PLS-SEM analysis that use primary data, an instrument test is first conducted before being 

distributed to research respondents. Instrument testing is carried out to ensure that the instruments used in research are 

of good quality and reliable for measuring research variables. The validity test is through content and item validity 

tests (Aiken, 1985; Gregory, 2015; Lawshe, 1975). If the test results show that the research instrument is consistent 

and accurate in measuring the research variables, the research instrument can be distributed to respondents who are 

the research sample to obtain research data. 

6. Data Analysis Methods. 

The data analysis method provides descriptive analysis and PLS-SEM multivariate analysis. In this context, the 

researcher describes the characteristics and demographics of the research sample. Various descriptive statistical 

measures can also be displayed to get an overview of respondents' perceptions. In multivariate analysis, researchers 

use software to explain PLS-SEM analysis through measurement model evaluation and structural model evaluation. 

Several software tools can be used to assist PLS-SEM analysis, such as PLS-Graph (Chin, 2003), SmartPLS (Ringle 

et al., 2015; Ringle et al., 2005), Warp PLS, and the PLS-PM package in R (Hair et al., 2021). Among these software 

tools, SmartPLS is more accessible and generally requires little technical knowledge of the PLS-SEM method. 

Therefore, SmartPLS is the most widely used tool by researchers to help conduct PLS-SEM analysis. This article 

provides practical guidance for researchers conducting PLS-SEM analysis using SmartPLS. 

3.3. Evaluation of PLS-SEM analysis with SmartPLS 

Researchers prepare research data in the Excel application, which is stored in CSV format. Researchers also need to 

check outliner data because it can affect the results of PLS-SEM analysis. An outlier is an extreme response to a 

particular question or an extreme reaction to all questions (Hair et al., 2017). Several methods can be used to examine 

outlier data: the Mahalanobis Distance Statistic, box plot, and scatter plot graph. In addition, the prepared data can 

override the normality distribution with a small sample size. However, it should be noted that the sample size should 

be representative, considering the specific characteristics of the model, the nature of the research objectives, and the 

statistical power required to obtain reliable and valid results (Hair et al., 2018). 

The first stage in PLS-SEM analysis is to formulate a conceptual model. It involves identifying latent and measured 

variables and determining the relationships between variables. Then, develop a measurement model that creates and 

links indicators (measured variables) with latent variables in SmartPLS software. Modeling refers to a recursive 

model where all causal effects are one-way based on research hypotheses. Latent variables are represented in SEM as 

ovals or circles, and measurement models are represented in SEM as rectangles or squares. The measurement model 

analyzes the relationship between the indicator and the latent variable, measuring how far the indicator can explain 

the latent variable. The relationship between indicators and their variables can be reflective or formative. 

Furthermore, the researcher drew the research model and imported the research data into the SmartPLS software 

(Sarstedt & Cheah, 2019).  

3.3.1 Measurement Model 

Measurement model evaluation is the first step in PLS-SEM analysis to ensure the validity and reliability of research 

constructs. In this stage, there are two approaches, reflective and formative measurement models, each with different 
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measurement criteria. SmartPLS compiled a measurement model or an outer model of research involving several 

latent variables presented in the form of ovals or circles. Then, each indicator described as a rectangle or square is 

connected to a latent variable according to the research model. Such relationships can be reflective models where the 

direction of the arrow is from the variable latent to the indicator and formative models where it is from an indicator to 

a variable latency (Hair et al., 2017). After that, do "Calculate" and select "PLS Algorithm" on SmartPLS. This 

process will produce values of some criteria that should be submitted to the research report.  

1. Reflective Model 

First, reflective indicator loading is done by evaluating the outer loading value. Outer loading refers to the single 

regression coefficient between the indicator or measurement variable and the latent variable or constructs estimated in 

the model. It measures the strength of the relationship between the observed variables (indicators) and the unobserved 

constructs (latent variables) they represent. Outer loading is essential in assessing indicator quality, showing how well 

each indicator represents the latent variable it measures. An established rule of thumb is that a latent variable should 

explain a substantial part of each indicator's variance, usually at least 50%. It also implies that the variance shared 

between the construct and its indicator is larger than the measurement error variance. An indicator's outer loading 

should be above 0.708 since that number squared (0.7082) equals 0.50. In most instances, 0.70 is considered close 

enough to 0.708 to be acceptable (Hair et al., 2019). In SmartPLS, the outer loading value can be seen in "Outer 

loading" in "Final result." If the outer loading value is green, it follows the provisions, but if it is red, it indicates a 

lower outer loading value of 0.7, so the indicator must be removed from the latent variable. After that, calculate like 

the first method through the "PLS Algorithm" until the outer loading value is obtained in green or meets the specified 

value. However, it should be considered that the elimination of outer loading that does not meet the criteria is carried 

out as long as it increases the composite reliability value or average variance extracted (Hair et al., 2017).  

Second, internal consistency reliability is measured from the value of Dillon-Goldstein's rho, or composite reliability 

(CR). In addition to CR, Cronbach's alpha (CA) is a value of internal consistency reliability that assumes equal 

indicator loadings that can be used to measure construct reliability. However, CR is considered better than CA 

because the CR measure considers the variance of the sum of variables in the block of interest. As a rule of thumb, a 

block is considered unidimensional when the CR is larger than 0.7 (Hair et al., 2017). The CR value of SmartPLS is 

shown in "Construct Reliability and Validity" in Quality criteria." If the CR value is green, then internal consistency 

reliability is acceptable. 

Third, convergent validity measures the extent to which different dimensions of the same structure are positively 

related. Convergent validity assesses whether several indicators that measure the same base structure merge or have a 

high variance ratio. The standard measure to establish convergent validity on the construct level is average variance 

extracted (AVE), defined as the average value of the squared load of the indicator related to the construct, that is, the 

sum of squared loads divided by the number of indicators. AVE is equivalent to the commonality of a construct. AVE 

value of 0.50 or higher indicates that, on average, the construct explains more than half of the variance of its 

indicators. AVE of less than 0.50 indicates that, on average, more error remains in the items than the variance 

explained by the construct (Hair et al., 2019). The higher the AVE value, the better a latent variable or construct 

explains the variance of its indicators. The AVE value in SmartPLS is presented in "Construct Reliability and 

Validity" in Quality criteria." If the AVE value is green, then convergent validity is met. 

Fourth, discriminant validity assesses the extent to which the measures of the constructs differ. This validity tests 

whether indicators of one construct are not closely related to indicators of other constructs. Several criteria, such as 

Cross-Loading, Fornel-Larcker, and Heterotrait-Monotrait Ratio (HTMT), can be used. Cross-loading is an approach 

by comparing the outer loading value of an indicator against its latent variable and the outer loading value of the 

indicator against other latent variables. The outer loading value of an indicator against its latent variable must be 

greater than the outer loading value of the indicator against other latent variables. It indicates that an indicator has 

proven to be better at measuring its latent variable than other variables. At the same time, the Fornel-Larcker criterion 

is an approach that compares the AVE square root of a latent variable to the correlation between that latent variable 

and other latent variables. 

The square root value of a latent variable must be greater than the correlation value between that latent variable and 

other latent variables. The last approach is HTMT, which is the ratio of heterotraite correlation (between indicators of 

different constructs) compared to monotraite correlation (between indicators of the same construct) (Hair et al., 2017). 

The expected value on HTMT is less than 0.90, indicating that the correlation between indicators of different 

constructs is lower than the correlation between indicators of the same construct. Of the three discriminant evaluation 

approaches, Henseler et al. (2015) recommend using the HTMT approach due to its better ability to assess the validity 
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of inter-construct discrimination in measurement models, provide more consistent results, and are more empirically 

reliable in discriminant validity analysis. The HTMT value can be seen in the "Discriminant Validity" in "Quality 

Criteria." HTMT values lower than 0.90 will be green so that it can be interpreted that the research instrument has 

good discriminant validity (see, for example, Subhaktiyasa et al., 2024).  

2. Formative Model  

In formative models, measurement evaluation uses criteria different from those of reflective models. The criteria to 

consider are convergent validity, the statistical significance and relevance of the indicator weights, and indicator 

collinearity (Hair et al., 2017). The first criterion, convergent validity in formative models, is determined through 

redundancy analysis. Researchers need to include alternative reflective indicators of formative measured constructs in 

questionnaires. Measuring one reflective item that describes the formative latent variable is sufficient (Cheah et al., 

2019). How to perform such analysis on SmartPLS begins by describing a construct model of a latent variable with 

several formative items and relating them to the same latent variable but with one reflective item. Then, calculate the 

“PLS Algorithm” to culminate a correlation value or path coefficient on the constructed model. Convergent validity 

in formative models is accepted if the correlation of constructs measured formatively with the constructs of a single 

item reaches 0.70 or higher (Hair et al., 2017).  

The second criterion is the assessment of indicator weights' statistical significance and relevance. In SmarPLS, the 

analysis process is performed by bootstrap calculations with subsamples 5000 times, and the BCa bootstrap 

confidence intervals method is chosen (Hair et al., 2017). Researchers need to pay attention to bootstrapping results 

on outer weight, where if the results show a significant value with a p-value smaller than 0.05, indicating a 

measurement item can explain the latent variable. However, if the result is insignificant (p-value greater than 0.05), 

then the measurement item of the latent variability does not need to be omitted if the loading factor value is greater 

than 0.50 (Hair et al., 2019). If the outer weight and outer loading are insignificant, then the indicator should be 

removed from the model, as there is no empirical support to retain it. Assessing the weak and robust relationship can 

refer to the outer weight value (original sample), where an outer weight close to 0 indicates a weak relationship and 

an outer weight close to +1 or -1 indicates a strong positive or negative relationship (Hair et al., 2019). The bootstrap 

results also show the value of the Variance Inflation Factor (VIF) as an indicator of collinearity evaluation for testing 

the third criterion. The higher the VIF value, the greater the level of collinearity between predictor constructs. 

Therefore, Hair et al. (2019) recommend a VIF value lower than 3 to indicate no multicollinearity. A collinearity 

problem may exist when the VIF value is three or greater and below 5.  

3. Second Order Measurement Model 

The second-order measurement model in PLS-SEM provides a framework for capturing constructs' complexity and 

multifaceted nature by simultaneously allowing researchers to examine the overall construct and its specific 

dimensions. This approach is precious when dealing with constructs that exhibit hierarchical relationships. By 

utilizing a second-order measurement model, researchers can represent the abstract nature of the construct and its 

specific subdimensions, providing a more detailed and nuanced representation of the construct under study. This 

approach allows researchers to gain insight into multifaceted constructs by considering the overall construct and its 

specific subdimensions, leading to a more comprehensive understanding of the investigated phenomenon. Moreover, 

the second-order measurement model is particularly beneficial when a more comprehensive understanding of the 

construct is required. By incorporating the overall construct and its specific dimensions, researchers can better 

understand the construct and its underlying relationships with other constructs in the model. This approach can lead to 

more accurate and robust results as it captures the complexity and multifaceted nature of the construct under study 

(Sarstedt et al., 2019).  

Several approaches have been proposed for specifying and estimating higher-order constructs in PLS-SEM, with the 

most prominent ones being the (extended) repeated indicators approach and the two-stage approach (Ringle et al., 

2012). When deciding which approach to use in second-order analysis, researchers should consider the specific 

characteristics of their higher-order constructs, the underlying relationships between the constructs, and the overall 

research objectives. Additionally, the choice of approach should be guided by the need to minimize biases in the 

estimation of the measurement and structural model relationships within the context of the study. The two-stage 

approach involves estimating the higher-order construct in two stages, focusing on minimizing biases in the structural 

model relationships. This approach demonstrates better parameter recovery of paths from exogenous constructs to the 

higher-order construct and from the higher-order construct to an endogenous construct in the path model. The 

rationale for this approach is its ability to provide a more valid estimation of the structural model relationships and 

accommodate reflective-formative and formative-formative type higher-order constructs (Sarstedt et al., 2019).  The 
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two-stage approach consists of the Embedded Two-Stage Approach (Ringle et al., 2012) and the Disjoint Two-Stage 

Approach (Becker et al., 2012). The embedded Two-Stage Approach estimates the measurement and structural 

models in a single step, making it more efficient and flexible. It is advantageous due to its efficiency, flexibility, 

robustness, and validity. The Disjoint Two-Stage Approach estimates the measurement and structural models in two 

separate steps. It is less efficient than the embedded two-stage approach but provides an alternative for analyzing 

second-order measurement models. However, it should be noted that these two approaches produce comparable 

results (Cheah et al., 2019).   

This article provides a practical guide to measuring second-order models with an Embedded Two-Stage approach 

using SmartPLS. The first step is the same as the process in the measurement model. Researchers describe the 

research model on SmartPLS as consisting of latent variables (higher-order component), dimensions (lower-order 

component), and indicators of each dimension of research variables. These higher-order constructs are then linked 

according to the purpose of the study, and the relationship can be in the form of reflective-reflective, reflective-

formative, formative-reflective, and formative-formative models (see, for example, Subhaktiyasa et al., 2023). 

Researchers do repeated indicators by inputting indicators according to their dimensions and all indicators on the 

latent variable.  

After that, carry out the PLS Algorithm calculation process on SmartPLS. At this stage, researchers only focus on 

evaluating the measurement model at the dimension level, and the examination is adjusted to the criteria according to 

the reflective or formative model. In the reflective model, the initial check at the dimension level is the outer loading 

value of 0.708 or more. If the outer loading value does not meet the requirements, remove the indicator on the 

dimension (lower-order component) and latent variable (higher-order component) simultaneously and re-calculate the 

PLS Algorithm. If all outer loading values have been fulfilled, then the examination continues on the CR, AVE, and 

HTMT values according to the evaluation process of the reflective measurement model (Hair et al., 2019). The same 

thing is also applied to the formative measurement model evaluation model. If all criteria have been met, create a 

latent variable score, an indicator of the research variable. Continue with the same procedure, redraw the research 

model in SmartPLS, then input the latent variable score on each research variable and connect each variable 

according to the research objectives. Calculate the PLS Algorithm and evaluate at the variable level with the same 

procedure for assessing the measurement of reflective and formative models. If all criteria have been met, the process 

of structural model evaluation can continue. 

3.3.2 Structural Model 

The structural model refers to the component of the overall model that focuses on the relationships between latent 

variables. The structural model, the inner model in PLS-SEM, tests hypotheses about the relationships between 

constructs or latent variables. The structural model in PLS-SEM consists of the paths or arrows representing the 

hypothesized relationships between the latent variables. These paths indicate one construct's directional influence or 

impact on another. The structural model is developed based on theoretical considerations, prior research, and the 

specific hypotheses being tested. It is an essential part of the PLS-SEM analysis as it allows researchers to examine 

the relationships between constructs and assess the overall theoretical model, both direct and indirect relationships 

involving mediating and moderating variables. Mediation occurs when a third variable (the mediator) intervenes in 

the relationship between an independent variable (exogenous construct) and a dependent variable (endogenous 

construct). It explains the process through which the independent variable influences the dependent variable. 

Mediation analysis focuses on understanding the indirect effects of the independent variable on the dependent 

variable through the mediator. Moderation, on the other hand, involves the influence of a third variable (the 

moderator) on the relationship between an independent and dependent variable. It examines how the strength or 

direction of the relationship between the independent and dependent variables varies depending on the different levels 

of the moderator. Mediating and moderating variables play complementary roles in PLS-SEM structural model 

evaluation. Mediation explains the process through which relationships occur, while moderation identifies the 

conditions under which relationships vary. Including mediating and moderating variables in the research model 

enhances understanding, improves model fit, and contributes to theory development and testing. At this stage, the 

structural model evaluation includes the evaluation of the model itself and the assessment of the goodness of the 

model (goodness-of-fit) using several criteria to assess the predictive capabilities of the model and the relationship 

between latent variables (Hair et al., 2017; Hair et al., 2018; Henseler et al., 2017). 

Researchers can carry out the structural model analysis process on SmartPLS if the research model at the 

measurement evaluation stage has met all the criteria. Next, select the research model and do the "calculate" process 

by selecting "bootstrapping." Then select "basic settings" with 5000 times subsamples (larger bootstrap subsamples 
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increase the computation time). In "Advanced Settings" for "Confidence Interval Method," select Bias-Corrected and 

Accelerated (BCa) Bootstrap and then "Start calculation." Bootstrapping results will provide information about final 

results, histograms, and databases.  

 

1. Structural Model Evaluation 

First, researchers must assess collinearity to ensure it does not introduce bias into the regression results. This 

assessment process resembles the evaluation of formative measurement models, but it involves using the latent 

variable scores of the exogenous constructs to calculate the VIF values. VIF values exceeding 5 suggest potential 

collinearity issues among the predictor constructs. Ideally, VIF values should be close to 3 or lower (Hair et al., 

2019). In cases where collinearity is problematic, a commonly employed approach is to develop higher-order models 

that align with established theory (Hair et al., 2017). In "PLS Algorithm," see "Quality Criteria" and select 

"Collinearity Statistic (VIF)," then select "Inner VIF Value." If the VIF value is green, it indicates that the VIF value 

is three or lower, indicating no multicollinearity. However, researchers can consider the value of VIF 5 or below 

according to the recommendations of Hair et al. (2019).  

Second, researchers assess direct and indirect influences to answer research hypotheses by evaluating the significance 

value of relationships between variables from bootstrapping results. See "Path Coefficient" in Final Results to 

evaluate the direct influence between variables. Researchers will get information related to the value of the original 

sample (O), Sample Mean (M), Standard Deviation (STDEV), Statistical T (IO / STDEVI), and p-value. If the t-

statistical value is more than 1.96 (t-table) and the p-value is smaller than 0.05, it indicates a significant influence 

between research variables. The effect can be positive or negative, as seen from the value of the path coefficient or O. 

In addition, researchers need to assess the "Confidence Interval" on the "Path Coefficient" and display information on 

the lower and upper limit values of the 95% confidence interval. 

While on indirect effects involving mediating or moderation variables, select "Specific Indirect Effect" in "Final 

Result." Researchers will get the same information as the "Path Coefficient" display. The assessment is also no 

different from the assessment of direct influence, where if the t-statistical value is more than 1.96 (t-table) and the p-

value is smaller than 0.05, it proves that there is a significant role of mediating or moderating variables in the 

influence between exogenous and endogenous variables. 95% confidence interval information for lower and upper 

bound values needs to be submitted to the research report. This information can be obtained in "Confidence Interval" 

in "Specific Indirect Effect." The confidence interval value at the 95% confidence interval shows the range of the 

lowest to highest level of influence of the exogenous variable on the endogenous variable. The analysis also shows 

the range of influence for mediating and moderation variables.  

2. Model Goodness Evaluation 

First, evaluate the model's explanatory power by examining the R² value of endogenous constructs. The R² measures 

the variance explained by each endogenous construct and measures the model's explanatory power. It is also referred 

to as in-sample predictive power (Rigdon, 2012), and its values range from 0 to 1, with higher values indicating 

greater explanatory power. In SmartPLS, the R² value can be seen from the "PLS Algorithm" results on "R square" in 

"Quality Criteria". As a general guideline, R² values of 0.75, 0.50, and 0.25 can be considered substantial, moderate, 

and weak, respectively (Henseler & Sarstedt, 2013). A value of R² greater than or equal to 0.90 suggests overfitting 

(Hair et al., 2019). However, acceptable R² values depend on the context, and in some fields, an R² value is as low as 

0.10 (Raithel et al., 2012).  

Second, the evaluation of the effect size of the direct relationship. This evaluation is quantified by the f² effect size, 

indicating the extent to which the exogenous variable can influence the endogenous variable and the robustness of the 

model in describing that influence. As a general guideline, values higher than 0.02, 0.15, and 0.35 represent small, 

medium, and large f² effect sizes, respectively (Cohen, 1988; Joe F Hair et al., 2019). The effect size value can only 

be interpreted to understand the effect size of the direct relationship between exogenous and endogenous variables. In 

SmartPLS, this f² effect size information can be seen in the results of the "PLS Algorithm" in "f square" in "Quality 

Criteria." Effect size involving mediating variables is not in the SmartPLS results, so the evaluation of the mediating 

effect size uses the upsilon statistical value (v) where v values higher than 0.02, 0.075, and 0.175, respectively, 

represent low, moderate, and high mediation size effects (Lachowicz et al., 2018). The effect size value of the 

moderating variable can be seen in the same way as the information on the effect size value of the direct relationship. 

However, the moderation size effect value refers to values higher than 0.005, 0.01, and 0.025, respectively, 

representing low, moderate, and high effects (Kenny, 2018). 
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Third, evaluating the predictive accuracy of the PLS path model is through the computation of the Stone-Geisser's Q² 

value (Geisser, 1974; Stone, 1974). This metric is derived from the blindfolding procedure, which involves the 

removal of individual points from the data matrix, substituting the removed points with the mean, and estimating the 

model parameters (Sarstedt et al., 2014). Consequently, the Q² does not solely measure out-of-sample prediction but 

integrates aspects of out-of-sample prediction and in-sample explanatory power (Sarstedt et al., 2021). The 

blindfolding procedure predicts the removed data points for all variables. Minor disparities between the predicted and 

original values result in a higher Q² value, indicating enhanced predictive accuracy. To get the Q² value on SmarPLS, 

the researcher performed a "calculate" on "blindfolding" to produce a "Construct Crossvalidated Reducancy" output 

that showed the value of "Q² (=1-SSE/SSO)". If Q² values exceed zero for a specific endogenous construct, signifying 

the predictive accuracy of the structural model for that construct. Generally, Q² values higher than 0, 025, 0.15, and 

0.35 represent the PLS-path model's small, medium, and large predictive relevance (Hair et al., 2017). 

Fourth, the SRMR (Standardized Root Mean Square Residual) approach measures the discrepancy between the 

observed and the model's implied correlation matrix. A goodness-of-fit (GoF) measure assesses the model's overall 

fit. The SRMR approach quantifies the average difference between the observed and predicted correlation matrix, 

standardized by the average residual correlation. The SRMR values range from 0 to 1, with lower values indicating 

better model fit. A commonly used guideline is that an SRMR value of 0.08 or lower indicates an acceptable model 

fit (Henseler et al., 2014). Schermelleh-engel and Moosbrugger (2003) stated that the SRMR value should be between 

0.08 and 0.10 to obtain an acceptable fit model. However, it is essential to note that the SRMR approach does not 

apply to PLS-SEM models because the algorithm for obtaining PLS-SEM solutions is not based on minimizing the 

divergence between observed and estimated covariance matrices, which is the basis of the SRMR approach (Henseler 

et al., 2017). Therefore, the SRMR approach should be used with caution in PLS-SEM applications. The SRMR value 

of SmarPLS is seen in the "Estimated Model" column of "Model Fit" in "Quality Criteria." In addition to the SRMR 

value, researchers can consider the Normed Fit Index (NFI) value to evaluate the model's goodness. The accepted NFI 

value exceeds 0.95 (Hu & Bentler, 1999). Hair et al. (2017) suggested not using the GoF criterion due to the fact that 

it does not represent the goodness of the model in PLS-SEM. GoF also cannot be applied to formative measurement 

models. 

Fifth, evaluate the predictive power of the PLS-SEM model through the PLSpredict approach. Its significance lies in 

its ability to assess the model's out-of-sample prediction performance, which is crucial for understanding how well it 

can generalize to new data. PLSpredict allows researchers to go beyond determining the model's fit to the observed 

data and evaluate its ability to make accurate predictions on new, unseen data. To get the PLSpredict value on 

SmartPLS, researchers conducted a "calculate" research model by selecting "PLS Predict" to produce "MV Prediction 

Summary" information. At this stage, compare the values of Root Mean Square Error (RMSE) or Mean Absolute 

Error (MAE) in PLS and RMSE or MAE in LM (linear regression). In comparing the RMSE (or MAE) values with 

the LM values, the following guidelines apply (Shmueli et al., 2019): If the PLS-SEM analysis, compared to the naïve 

LM benchmark, yields higher prediction errors in terms of RMSE (or MAE) for all indicators, this indicates that the 

model lacks predictive power. The model has a low predictive power if most of the dependent construct indicators in 

the PLS-SEM analysis produce higher prediction errors than the naïve LM benchmark. If the minority (or the same 

number) of indicators in the PLS-SEM analysis yields greater prediction errors than the naïve LM benchmark, this 

indicates a medium predictive power. If none of the indicators in the PLS-SEM analysis has higher RMSE (or MAE) 

values compared to the naïve LM benchmark, the model has high predictive power. 

Finally, a robustness check is performed by paying attention to nonlinear effects, endogeneity, and unobserved 

heterogeneity (Sarstedt et al., 2019). Robustness checks are an essential component of PLS-SEM analysis, as they 

help ensure the model's results are reliable and consistent. By conducting these checks, researchers can have greater 

confidence in the validity and generalizability of their findings and can make more informed decisions based on the 

model's results (Hair et al., 2019). First, unobserved nonlinearity refers to the potential existence of nonlinear 

relationships between variables not considered in the model. It is important to ensure that the model's assumptions 

about linear relationships between variables are valid. This process accurately captures the true nature of the 

relationships between variables and makes reliable predictions based on the model. In SmartPLS, select "Quadratic 

Effect" and then select the entire relationship line from several exogenous to endogenous variables. Do the same if the 

research model has multiple endogenous variables. Then select "calculate" and "bootstrapping" so that "Path 

Coefficient" will appear. In this display, researchers pay attention to the Quadratic Effect (QE) value of each 

relationship between exogenous variables and endogenous variables. If the P Value indicates red or greater than 0.05 

or insignificant, it can be concluded that there is a linear effect between exogenous and endogenous variables. Second, 

endogeneity occurs when a predictor variable is correlated with the error term in a regression model, leading to biased 



Subhaktiyasa et.al |  EduLine: Journal of Education and Learning Innovation, 2024, 4(3): 353–365 

362 

and inconsistent parameter estimates. Checking for endogeneity is important to ensure that the relationships between 

variables are accurately captured and that the model's results are not influenced by endogenous factors. To evaluate 

endogeneity in PLS-SEM using the Gaussian copula analysis approach (Hair et al., 2018). In SmartPLS, select 

"Gaussian Copula" then select the relationship line between exeogen to endogenous variables. Then select "calculate" 

and "bootstrapping" so that "Path Coefficient" will appear. Pay attention to the p-value Gaussian Copula (GC) value; 

if it is red, greater than 0.05, or insignificant, it can be concluded that there is no endogeneity problem. Do it 

gradually; for example, if there are 2 exogenous variables and 1 endogenous variable, then Gaussian copula analysis is 

carried out 3 times, namely on the relationship line of exogenous variable 1, the relationship line of exogenous 

variable 2, and the relationship line of exogenous variables 1 and 2. Third, heterogeneity effects refer to the potential 

presence of unobserved differences or variations in the relationships between variables across different subgroups or 

segments of the data. Checking for heterogeneity effects is important to ensure the model's results are robust and 

generalizable across different population segments. Evaluation of heterogeneity effects on SmartPLS using Finite 

mixture partial least squares (FIMIX-PLS) approach.  Heterogeneity effects testing is better for large samples, 

considering that this test will divide the sample into several segments. FIMIX-PLS segmentation is a method to 

uncover unobserved heterogeneity in the inner (structural) model. It captures heterogeneity by estimating the 

probabilities of segment memberships for each observation and simultaneously estimates the path coefficients for all 

segments. In SmartPLS, do the calculation by selecting "Finite Mixture (FIMIX) Segmentation," then in "Basic 

Setting," input the number of segments in "Number of Segments" (determining the number of segments can be done 

by dividing the number of samples by the minimum number of samples specified) by "Maximum Iterations" 5000 

times and "Number of Repetitions" is 10 times. Repeat from the highest segment number to segment number 1. The 

results of this process will be displayed in "Fit Indices" in "Quality Criteria" by providing information on the values of 

AIC (Akaike's Information Criterion), AIC3 (Modified AIC with Factor 3), AIC4 (Modified AIC with Factor 4), BIC 

(Bayesian Information Criteria), CAIC (Consistent AIC), HQ (Hannan Quinn Criterion), MDL5 (Minimum 

Description Length with Factor 5), LnL (LogLikelihood), EN (Entropy Statistic), NFI (Non-Fuzzy Index) and NEC 

(Normalized Entropy Criterion). The Fit Indices value information of each segment is collected in 1 table to see how 

the values of each segment compare. Heterogeneity effects are shown in the AIC3, AIC4, BIC, CAIC, and EN values. 

Researchers noticed the consistency of AIC3 and CAIC, AIC3 and BIC, IC4 and BIC in 1 segment. In addition, EN 

must be at least 0.50 or greater. The evaluation is continued from the "Segment Sizes" information in the "Final 

Results" to obtain consideration of the relative segment sizes of the FIMIX-PLS solution for a certain number of 

predetermined segments. The value of segment sizes from the analysis of each segment number is collected in 1 table, 

and then observations are made on segments that have the best possibility to guarantee a valid analysis (Hair et al., 

2018; Sarstedt et al., 2019).  

4. Conclusion 

This study provides practical guidance for researchers conducting multivariate social sciences research in PLS-SEM 

analysis using SmartPLS. Researchers with limited knowledge of the PLS-SEM method can use SmartPLS to obtain 

valid analysis results. The findings indicate the importance of researchers reporting relevant reasons for using PLS-

SEM. Several of the underlying points that are presented and explained in the research methodology include research 

objectives that explore theoretical extensions for theory development from a predictive perspective, populations with 

small samples that tend to be non-normally distributed, a constellation of research variables that shows a complex 

structural model with reflective and or formative approaches in first order or second order that requires latent variable 

scores, primary or secondary data sources with the possibility of not having comprehensive evidence based on 

measurement theory, instruments that were tested for validity and reliability, and research data analysis using 

SmartPLS with measurement criteria. PLS-SEM analysis evaluates the measurement model (outer model) and 

structural model (inner model). The criteria for evaluating the reflective measurement model consist of reflective 

indicator loadings referring to the outer loading value, internal consistency reliability referring to the consistency 

reliability (CR) value, convergent validity referring to the AVE value, and discriminant validity with the HTMT 

approach. While evaluating the formative measurement model, which consists of convergent validity with 

redundancy analysis, the relevance of the indicator weights refers to the outer weight value, and collinearity refers to 

the VIF value.  
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The structural model evaluation consists of evaluating collinearity referring to the VIF value, significant research 

models referring to the p-value, effect size f square for direct effects and upsilon statistical value for the effect size of 

indirect effects involving mediating variables, R square value, Q square through blindfolding procedures, SRMR 

value, PLSpredict, and robustness check by paying attention to the nonlinear impacts, endogeneity, and unobserved 

heterogeneity. Although this research contributes significantly to understanding PLS-SEM analysis, it also has 

limitations. The study only analyzes the application of SmartPLS software to obtain output results according to the 

needs of PLS-SEM analysis. Further studies using other software must be done to compare comprehensively. In 

addition, case examples can be added to make the analysis more straightforward to understand. 
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