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Abstract: An unstable economy is rife with fraud. Perpetrated on customers, it 

ranges from employees’ internal abuse to large fraud via high-value contracts 

cum control breaches that impose serious consequences to biz. Loyal 

employees may not perpetrate fraud if not for societal pressures and economic 

recession with its rationalization that they have bills to pay and children to feed. 

Thus, the need for financial institutions to embark on effective measures via 

schemes that will aids both fraud prevention and detection. Study proposes 

genetic algorithm trained neural net model to accurately classify credit card 

transactions. Compared, model used a rule-based system to provide it with 

start-up solution and it has a fraud catching rate of 91% with a consequent, 

false alarm rate of 9%. Its convergence time is found to depend on how close 

the initial solution space is to the fitness function, and for recombination and 

mutation rates applied. 

Keywords: Malware, memetic algorithm, payload, deep learning, intrusion detection, 
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1. INTRODUCTION 

Malware has 3-modules: infect, trigger and payload. The Infect routine details the mechanism 
on how the malware modifies its host and copies itself unto the host machine. The trigger 
routine details how and when the malware delivers payload; while, the payload routine details 
what damage is achieved by the malware. Trigger and payload routines are optional as seen 
in fig 1. The infect pseudo-code. Subroutine Infect selects a target from M-targets to infect 
when run. Select_target details target selection criteria as same target should not be repeatedly 
selected; else, reveals presence of a virus. And, Infect_code performs actual infection by 
inserting its code into the target (Zink, 2009; Zakorzheysky, 2011; Ojugo and Yoro, 2021). 

 

 

 

 

 

Malware self-replicates its codes onto a machine without the user’s consent, and spreads by 
attaching a copy of itself to some part of program file. It attacks system resources and delivers 
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Figure 1. Sections 1 and 2 of Virus Pseudo-code 

Def Virus(): 
 Infect() 
 If Trigger() is TRUE then 
 Payload is delivered() 

Def Infect(): 
 Repeat M times() 
     Target = Select_target() 
   If no target() THEN 
Return Infect code(target) 
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a payload that aims to corrupt program, delete files, reformat disks, crash network, destroy 
critical data or embark on other damage to the host machine. Malwares are classified into 
(Ojugo and Yoro, 2020; Ye et al, 2008; Szor, 2005; Mishra, 2003; Orr, 2006; 2007): 

 Simple virus that replicates itself when launched to gain control of a host machine by 
attaching copies of itself to another program as it spreads. It then transfers control back 
to host program. It can be detected through scan for a defined sequence of bytes, known 
as a signature 

 Encrypted viruses scrambles its signature, making it unrecognizable at execution. Its 
decryption routine transfers control to its decrypted virus body so that each time it infects 
a new program, it makes copy of both the decrypted body and its related decryption 
routine. It then encrypts a copy and attaches both to a target system. It uses an encryption 
key to encrypt its body. As the key changes, it scrambles its body so that virus appears 
different from one infection to another. Such virus is difficult to detect via signature. 
Thus, antivirus must scan for a constant decryption routine. 

 Polymorphic consists of a scrambled body, mutation engine and decryption routine. The 
decryption routine gains control to decrypt both its body and mutation engine. It then 
transfers control to the scrambled body to locate a new file to infect. It copies its body 
and mutation engine into RAM, and invokes its mutation engine to randomly generate 
new decryption routine to decrypt its body with little or no semblance to the previous 
routine. It then appends this newly encrypted body, a mutation engine and decryption 
routine to the newly infected file. Thus, the encrypted body and the decryption routine, 
varies from one infection to another. With no fixed signature and decryption routine, no 
two infections is alike. 

 Metamorphic avoid detection by rewriting completely, its code each time it infects a new 
file. Its engine accomplishes this code obfuscation and metamorphism, which in most 
cases – is 90% of its assembly language codes (Singhal and Raul, 2012; Rabek et al, 2003).  

1.1. Metamorphic: An Overview 

Metamorphics transform its codes as they propagate to avoid detection by using obfuscation 
methods to alters its behaviour when it detects its execution within virtual machine (sandbox) 
as means to challenge a deeper analysis (Bolton and Head, 2002; Brause et al, 1999). Virus 
writer use the weaknesses in antiviruses, as limited to static and dynamic analysis, and attacks 
the following: (a) data flow, (b) control flow graph generations, (c) procedure abstract, (d) 
property verification, and (e) disassembly – all means to counter scans, to identify such 
metamorphic viruses (Burge and Shawe-Taylor, 2001). To mutate its code generation, 
metamorphic analyse their own codes and must re-evaluate the mutated codes generated 
(since complexity of transformation in the previous generation has a direct impact on its 
current state, how a virus analyses and transforms code in its current generation). Thus, they 
employ code conversion algorithm that helps them detect their own obfuscation and 
reordering (Delamaire and Abdou, 2009; Filiol, 2005). Thus, rather than use encryption, 
metamorphic can change their code structure and appearances while keeping its functionality 
intact. It does this via code obfuscation methods as in fig 2. 

  

 

 
 

Its engine reads in a virus executable, locates code to be transformed using its 
locate_own_code module. Each engine has its transformation rule that defines how a 
particular opcode or a sequence of opcodes is to be transformed. The decode module extracts 
the rules by disassembling the codes and passing it onto the next module. The analyze 
module analyses the current copy of the virus and determines what transformations must be 
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Figure 2. Distinct Signature of Metamorphic 

Virus 
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applied to generate the next morphed copy. The mutate module performs the actual 
transformations by replacing an instruction (set) with the other its equivalent code; While, 
Attach module attaches the mutated or transformed copy to a host (Dheepa and Dhanapal, 
2009; Duman and Ozcelik, 2011; Grimes, 2001; Hashemi et al, 2008; Sung et al, 2004; Desai, 
2008; Walestein et al, 2007; Wong, 2006).  

Khin (2019) A metamorphic engine may consist of: (a) internal disassemble to disassemble 
binary codes, (b) a shrinker replaces two or more codes with its single equivalent, (c) an 
expander replaces an instruction with many codes that performs same action, (d) a swapper 
reorders codes by swapping two/more unrelated codes, (e) a relocator assigns and relocate 
relative references such as jumps and call, (f) garbager (constructor) inserts whitespaces (do-
nothing codes) to the program, and (g) cleaner (destructor) undoes actions of a garbager by 
removing whitespaces instructions. Some major feats of an effective metamorphic engine 
includes: (i) must be able to handle any assembly language opcode, (ii) shrinker and swapper 
must be able to process more than one instruction concurrently, (iii) garbager is used 
moderately, not to affect actual instructions, and (iv) swapper analyzes each instruction so as 
not to affect next instructions’ execution (Kim et al, 2002; Maes et al, 2017; Malek et al, 2008; 
Venkatesan, 2006; Konstatinou, 2008). 

1.2. Call for Papers and Word Count [Subheading 11pt, Garamond, Italic, Justified] 

Metamorphic engine uses code obfuscation to yield morphed copies of original program. 
Obfuscated code is more difficult to understand and can generate different looking copies of 
a parent file as it operates on both control flow and data section of a program (Marane, 2011). 
Code obfuscation is achieved via (Nigrini, 2011; Borello and Me, 2008): 

● Register Usage Exchange/Renaming – modifies the register data of an instruction 
without changing the codes itself, which remain constant across all morphed copies. 
Thus, only the operands changes. 

● Dead Code inserts do-nothing (whitespace) codes that do not affect execution via a block 
or single instruction so as to change codes’ appearance while retaining functionality.  

● Subroutine Permutation aims to reorder subroutines so that a program of many 
subroutines can generate (n-1)! varied routine permutations, whose addition will not 
affect its functionality as this is not important for its execution.  

● Equivalent Code Substitution replaces instruction with its equivalent instruction (or 
blocks). A general task can be achieved in different ways. Same feat is used in equivalent 
code substitution. 

● Transposition/Permutation – modifies program execution order only if there is no 
dependency amongst instructions. 

● Code Reorder inserts unconditional and conditional branch after each instruction (or 
block), and defines branching instructions to be permuted so as to change the programs’ 
control-flow. Conditional branch is always preceded by a test instruction which always 
forces the execution of the branching instruction. 

● Subroutine Inline/Outline is similar to dead code insertion in that subroutine call are 
replaced with its equivalent code as Inline inserts arbitrary dead code in a program; while 
outline converts block of code into subroutine and replace the block with a call to the 
subroutine. It essentially does not preserve any logical code grouping. 

1.3. Study Motivation 

Study is motivated thus (Stolfo et al, 2015; Ojugo and Eboka, 2021; Ojugo and Oyemade, 
2021; Noreen et al, 2008): 

1) With detection mechanisms broadly classified into: (a) signature-based scans for 
signature, and to evade it – virus makers create new virus strings that can alter their 
structure while keeping its functionality via code obfuscation method, and (b) code 
emulation creates sandbox or virtual machine, so that files are executed within it and 
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scanned for virus. Once the virus is detected, it is no longer a threat – since it is running 
in controlled environment that limit damage to host machine. Thus, sharing malware 
detection implementation in details over public domain is quite unwise – as it will 
continually serve to further equip adversaries with adequate data required to evade 
detection. 

2) The complex, dynamic and chaotic nature of fraudulent transactions using malware 
intrusion acts, and its range of complications as providing a backdoor to allow for other 
crime makes imperative and critical, early and accurate detection. Supervised detection 
alone via careful monitoring and management of network is insufficient as intruders 
often evade such as it often yields inconclusive results for unknown inputs. This leads 
to increased rate of false-positives and true-negatives. Our proposed model will 
effectively classify malware from genuine activities using the hybrid model as in Section 
II. 

3) Unavailability of fraud datasets and its censored results – makes fraud detection 
techniques and studies difficult to assess. Dataset also consist of ambiguities, imprecision, 
noise and impartial truth that must be resolved via robust search in the bid to classify 
observations and expected values effectively as in Section(s) II and III respectively 

4) Classification via predictive models is a complex and difficult task due to its chaotic and 
dynamic nature. Thus, we employ unsupervised model to resolve effectively and 
efficiently, statistical dependences and conflict imposed on the model by dataset used in 
approximating the data feats of interest. 

5) Use of hill-climbing methods often has speed constraint imposed on it as the solutions 
are often trapped at local maxima. This is resolved with hybridization of statistical 
methods as in Section III/IV. Also, search for optimal via evolutionary heuristics can be 
quite cumbersome (though no one method yields better optimal than hybrids). Model 
must also resolve the statistical dependencies imposed on it by hybridization. 

6) Search for optimal solution, may also yield overtraining and over-fitting of the model as 
it aims to find underlying probability of data feat(s) of interest. Also, improper selection 
of feats may also lead to over-parameterization. 

7) Some model aim at a single suspicion score to globally classify statistical fraud. Studies 
show however, that some cases may be a result of true-negatives and false-positives 
scores as resolved in Section III. 

 
Our proposed genetic algorithm trained neural net will employ unsupervised (improved) 
classification method that will help propagate observed data in model as it seeks data feats of 
interest to yield an output.. Evolutionary models have achieved great success in their 
enhancement for accurate prediction in its search for optimal solution, chosen from a set of 
possible solution space, to yield an output that is guaranteed of high quality and void of 
ambiguities. These models, further tuned can become robust and perform quantitative 
processing to ensure qualitative knowledge and experience, as its new language (Murad and 
Pinkas, 1999; Ojugo et al, 2013; Ojugo and Yoro, 2021; Kandeeban and Rajesh, 2007). 

2. Literature Review 

2.1. Data Gathering and Population 

Our dataset contains 33,000 records of intrusion rules. Each record has 23-fields and our 
nondisclosure agreement prohibits us from revealing the details of the database schema as 
well as the contents of the data. But, it suffices to know that it is a common schema used by 
banks in Africa and Nigeria as part of the harmonization scheme. It contains information 
that banks deem important for identifying fraudulent transactions. The dataset was already 
classified into fraudulent or non-fraudulent classes. From records, 38.2% are fraud 
transactions (emanating from product transaction, asset misappropriation, corruption and 
financial statement fraud). The sampled data is for a 24-month period. Note that the number 
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of fraud records for each month varies, and the fraud percentages for each month are 
different from the actual real-world distribution (Lakhotia et al, 2004). 

2.2. Data Conditioning and Preprocessing 

Here, we seek to know if (Perez and Marwala, 2011): 

a. First, do we use the original data schema as is or do we condition (pre-process) the data 
by computing aggregate statistics or discretize certain fields? In our experiments, we 
removed several redundant fields from the original data schema. This helped to reduce 
the data size, thus speeding up the learning programs and making the learned patterns 
more concise. We have compared the results of learning on the conditioned data versus 
the original data, and saw no loss in accuracy. 

b. Since the data has a skewed class distribution (20% fraud and 80% non-fraud), can we 
train on data that has (artificially) higher fraud rate and still compute accurate fraud 
patterns? And what is the optimal fraud rate in the training data? Pre-analysis experiments 
have shown that the training data with a 50% fraud distribution produces the best 
classifiers. 

c. What percentage of the total available data do we use for our learning task? Most machine 
learning algorithms require the entire training data be loaded into the main memory. With 
our database very large, it is impractical. More importantly, we wanted to demonstrate 
that meta-learning can be used to scale up learning algorithms while maintaining the 
overall accuracy. In our experiments, only a portion of the original database was used for 
learning (details provided in the next section). 

d. How do we validate and test our fraud patterns? In other words, what data samples do 
we use for validation and testing? In our experiment, the training data were sampled from 
earlier months, the validation data (for meta-learning) and the testing data were sampled 
from later months. The intuition behind this scheme is that we need to simulate the real 
world environment where models will be learned using data from the previous months, 
and used to classify data of the current month. 

e. How do we evaluate a classifiers? Its accuracy is important but even a dummy algorithm 
can achieves 80% accuracy. For malware detection, its catching rate and false alarm rate 
are the critical metrics. A low catch-rate means that a large number of transactions will 
go through the system and cost users more money. Conversely, a high false alarm rate 
means that a large number of genuine rules will be blocked and human intervention is 
required to authorize such rules. Ideally, a cost function that takes into account both the 
True and False Positive rates should be used to compare the classifiers. For lack of cost 
information, we rank our classifiers using first the detection rate and the false alarm rate. 
Implicitly, we consider fraud catching rate as much more important than false alarm rate 
(Ojugo and Eboka, 2018a; 2018b, 2019; Tobiyama et al, 2016; Ojugo and Ekurume, 
2021). 
 

From original dataset, we prepared the data as suitable for use by the model by removing 
redundant fields. This helps to reduce the data size as well as speed up the learning heuristics, 
simplified the learning patterns and made the learned patterns more concise (as adapted from 
Stolfo et al, 2015). We also compared results of learning between our suitable data versus the 
original data, and saw no loss in accuracy. Also, observed data had a skewed distribution of 
34% fraud and 66% non-fraud). We adopt 34% fraud class distribution as complete dataset 
(training data for fraud is always insufficient and we are not expecting an artificially, higher 
fraud rate to accurately compute suspicion score for fraud patterns). We also must determine 
suspicion score for each rule generated by the rule-based model in conjunction with the GA 
operators to help optimize functions for our training data. And though there are no rules for 
splitting data, we split it as 50% training, 25% cross-validation and 25% testing for fraud 
distribution, which also yielded the best classifier for the model. Thus, we demonstrate that 
even with outliers and noise in dataset and with imprecision and ambiguities applied at its 
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input, model effectively classifies transactions into its proper classes. Thus, GANN 
effectively scales up learning algorithms void of over-parameterization, over-training and 
over-fitting of data feats; while maintaining overall performance accuracy (Ojugo and Eboka, 
2019; 2020a; 2020b; 2020c; Xu et al, 2007). 

 
2.3.  Experimental Memetic Ensemble 

The proposed model cum ensemble consists of these parts (Ojugo and Yoro, 2020; 2021; 
Wheeler and Aitkens, 2019): 

a. Knowledgebase – consists of observed, historic structured data feats. The dataset is a 
record of fraudulent malware intrusion transactions stored and converted as fuzzy if-
then ruleset using optimized membership functions. The rule-based system consists of 
classifier to propagate the IF-THEN rule values of selected data, enhanced them as 
predefined variables classification into intrusion types for fraud detection. Its houses the 
optimized universe discourse values as represented by fuzzy-if-then, linguistic variables 
(rule-based) as selected data feats. 

b. Inference engine – consists of the memetic algorithm (i.e. the hybrid, rule-based genetic 
algorithm trained neural network model). The neural network is constructed using the 
Jordan network, and seeks to provide a self-learning ability, optimized by the CGA 
optimizer that recombines and mutates the rule-based fuzzy dataset to train and test the 
system so that it autonomously classify diabetes into its class types. Conversely, the 
Genetic Algorithm helps train the neural net so that combined – they effectively optimize 
our collated-answers within the tuned fuzzy rules values in other to yield a centralized, 
fuzzy-scaled function boundary in determining high/low degree membership function. 
Thus, the inference engine infers conclusion derived from genetic algorithm trained 
neural network from the selected data feats encoded as fuzzy-if-then conditions with 
possible outcomes and consequent action upon criteria being met. 

c. Decision support– consists of the predicted output and the output database that is 
updated automatically in time as patients are diagnoses as long as it encounters and read 
sin new data. The decision support predicts system output based on the cognitive and 
the emotional filers as display by the output device. This is seen in fig 1. 

 
The experimental ensemble is initialized with the if-then rules as individuals, whose fitness is 
computed. 30-individuals are then selected via tournament method as new pool. It then 
determines mating individuals to yield solutions. We use a multi-point crossover and mutation 
to help the network to learn all the dynamic and non-linear feats in the dataset (as feats of 
interest). With mutation, suspicion score for each rule between 1-to-30 is then randomly 
generated using Gaussian distribution corresponding to crossover points (all genes are from 
single parent). As new parents contribute the rest to yield new individuals whose genetic 
makeup is a combination of both parents, mutation is also applied to yield 3-random genes. 
These further undergo mutation and are then allocated new random values that still conform 
to the belief space. These random values will range between 0 and 1, which yields the suspicion 
score for each transaction as generated for each account holder (Syeda et al, 2002; Sylla and 
Wild, 2011; Vooshoghi et al, 2019). 

The number of mutation applied depends on how far GA is progressed (how fit is the fittest 
individual in the pool), which equals fitness of the fittest individual divided by 2. New 
individuals replace old with low fitness so as to create a new pool. Process continues until 
individual with a fitness value of 0.8 is found – indicating that the solution has been reached 
(Ojugo and Ekurume, 2020; Ojugo and Otakore, 2018; 2020). Initialization and selection via 
ANN ensures that first 3-beliefs are met; mutation ensures fourth belief is met. Its influence 
function influences how many mutations take place, and the knowledge of solution (how close 
its solution is) has direct impact on how algorithm is processed. Algorithm stops when best 
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individual has fitness of 0 (Ojugo and Otakore, 2021; Ojugo and Oyemade, 2021; Phua et al, 
2007; Stolfo et al, 2000). 

3. Result Findings and Discussion 

3.1. Result Findings 

For malware detection, the performance rating of any detection mechanism is in its fraud 
catching rate and its false alarm rate. These are critical metrics such that a low fraud catching 
rate implies that a large number of fraudulent transactions will go through the system; Thus, 
costing the banks a lot of money (and the cost will eventually be passed to the consumers. 
Also, a high false alarm rate implies that large number of legitimate transactions will be 
blocked by the detection system. Thus, supervised intervention, monitoring and management 
will then be required to authorize transactions. This will frustrate many customers, while also 
adding operational costs. Also, the malware detection rate is more important and critical than 
the false-alarm rate (true-negatives and false- positives). Ideally, a cost function that takes into 
account true-negatives and false-positive rates, should be used to compare the classifiers. For 
lack of cost data, we rank our classifiers using first the fraud catching rate as in table 1. 

Table 1. Average Performance at each 1000th Generation 

Generations Average Fitness 

0 0.0000 

1000 0.6707 

2000 0.7274 

3000 0.6781 

4000 0.6650 

5000 0.8048 

Performance is evaluated via computed values: mean square error, coefficient efficiency as 
well as on classification accuracy, false-positive and true-negative rates as in table 2 below 
(when compared to variant models): 

Table 2. Model Convergence Performance Evaluation 

Model MSE COE Classification Accuracy  False Positive True Negative 

Fuzzy Rule   73% 27% 18.2% 

ANN 0.230 0.310 0.82 10.96% 4.59% 

Profile-HMM 0.134 0.280 0.90 12% 9.7% 

Proposed Memetic Model  0.313 0.219 0.96 9% 5% 

 

 

 

 

 

 

 

 

Figure 4. Evolution of Parameters in Time showing Convergence in Solution 

 

After training and testing, compared to the models ANN, CGA and rule based system, the 
results are as follows: (a) ANN was run 24times and it took 223seconds to find solution after 
98- iterations (best) and its fraud catching rate ranks at 76%. But, its demerit is that its solution 
is often trapped at local maxima, (b) GA was run 15-times to eradicate biasness and solution 
was found each time. It took 98seconds to find the solution after 123-iterations (best) and its 
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fraud catching rate is 76%. Its convergence time depends on how close the initial population 
is to the solution as well as on the mutation applied to the individuals in the pool. Its demerit 
is that it seeks global optima (in this case, a single rule that can be applied to all transactions. 
This is in agreement with Ojugo and Yoro (2020; 2021). This would be appropriate if the 
transaction platforms are not considered as user are allowed to make transactions from 
various places – using varying devices that grants them access to their account at any point 
in time, and (c) CGANN with rule-based pre-processor hybrid was run 152times and its time 
varied between 29- and 245seconds to find solution after 102-iterations (best) and its fraud 
catching rate ranks at 91%. Its solution was made even closer using the fuzzy variable dataset 
as a pre-processor (agrees with Ojugo et al, 2014; 2015a; 2015b; Okobah and Ojugo, 2018). 

3.2. Result Findings 

Our hybrid memetic algorithm employed the fuzzy universe discourse linguistics and fuzzy 
system as a preprocessor. In the design, building and implementing if such hybrid – we took 
cognizance that genetic algorithm will help speed up the ANN to avoid it being trapped at 
local maxima as well as in region of multi-modal local maxima. This will enable the model 
yield robust optima in the shortest amount of time. The fuzzy system will help better 
represent variables and data values in the model. Hybrids have proven to be intelligent 
modules to transform transaction with adaptive results that provides potential model for 
fraud detection. Its generated rule set has an accuracy of 92%, sensitivity of 91%, and failure 
analysis (true-negative and false-positive rate) of 14% respectively. However, the extracted 
rules are sound and agree with outcome of relevant fraud detection norms and studies. 
Antivirus often impairs system performance, and incorrect decision may lead to security 
breach as it runs at the kernel of the operating system. If an antivirus uses heuristics, its 
success depends on the right balance between positives and negatives. Today, malware may 
no longer be executables. Macros can present security risk and antivirus heavily relies on 
signature-detection. Metamorphic and polymorphic viruses, evades and makes signature 
detection, quite ineffective.  

4. Summary and Conclusion 

Hybrids are quite difficult to implement and explore – even though they always yield optimal 
and better solutions. However, care must be employed during parameter selection to avoid 
over-fitting, over-parameterization and over-training. Also, the correctly formatted 
(explored) historic dataset must be encoded through the underlying algorithm’s structured 
learning for robustness and code reuse as well as allow for model’s adaptability and flexibility. 
This will in turn help to address the inherent issues of statistical dependencies imposed on 
the model by the various models fused for hybridization. However, proper encoding schemes 
must be selected to help resolve the conflicts in the data feats of interest – as most systems 
may not adequately highlight the implications of such in a multi-agent and multi-modal 
populated model. This is because the agents as they traverse the network or system – often 
can create their own behavioural rules on the dataset used – so that in most cases, they display 
results of complex chaos, non-linearity and dynamism (as expected) of the underlying 
probabilities of data feats of interest. To help curb this, we employed Cultural-GA, which 
ensures via its belief functions that all conditions to yield better generation is met with the 
processes of crossover and mutation applied. 
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