

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 12 of 23

RESEARCH ARTICLE

Quest for Convergence Solution via Hybrid Genetic
Algorithm Trained Neural Network Model for
Metamorphic Malware Detection

Arnold Adimabua Ojugo1*, Chris Obaro Obruche 2, Andrew Okonji Eboka3

1Department of Computer Science, College of Science, Federal University of

Petroleum Resources Effurun, Delta State, Nigeria
2Research Assistant, Department of Computer Science, College of Science,

Federal University of Petroleum Resources Effurun, Delta State, Nigeria
3Department of Network Computing, Coventry University, Priory Street

Coventry CV1 5FB, United Kingdom

Abstract: An unstable economy is rife with fraud. Perpetrated on customers, it

ranges from employees’ internal abuse to large fraud via high-value contracts

cum control breaches that impose serious consequences to biz. Loyal

employees may not perpetrate fraud if not for societal pressures and economic

recession with its rationalization that they have bills to pay and children to feed.

Thus, the need for financial institutions to embark on effective measures via

schemes that will aids both fraud prevention and detection. Study proposes

genetic algorithm trained neural net model to accurately classify credit card

transactions. Compared, model used a rule-based system to provide it with

start-up solution and it has a fraud catching rate of 91% with a consequent,

false alarm rate of 9%. Its convergence time is found to depend on how close

the initial solution space is to the fitness function, and for recombination and

mutation rates applied.

Keywords: Malware, memetic algorithm, payload, deep learning, intrusion detection,
convergence, metamorphic

1. INTRODUCTION

Malware has 3-modules: infect, trigger and payload. The Infect routine details the mechanism
on how the malware modifies its host and copies itself unto the host machine. The trigger
routine details how and when the malware delivers payload; while, the payload routine details
what damage is achieved by the malware. Trigger and payload routines are optional as seen
in fig 1. The infect pseudo-code. Subroutine Infect selects a target from M-targets to infect
when run. Select_target details target selection criteria as same target should not be repeatedly
selected; else, reveals presence of a virus. And, Infect_code performs actual infection by
inserting its code into the target (Zink, 2009; Zakorzheysky, 2011; Ojugo and Yoro, 2021).

Malware self-replicates its codes onto a machine without the user’s consent, and spreads by
attaching a copy of itself to some part of program file. It attacks system resources and delivers

*Corresponding author: Arnold

Adimabua Ojugo, Department of

Computer Science, Federal University

of Petroleum Resources Effurun, Delta

State, Nigeria

E-mail: ojugo.arnold@fupre.edu.ng

Figure 1. Sections 1 and 2 of Virus Pseudo-code

Def Virus():
 Infect()
 If Trigger() is TRUE then
 Payload is delivered()

Def Infect():
 Repeat M times()
 Target = Select_target()
 If no target() THEN
Return Infect code(target)

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 13 of 23

a payload that aims to corrupt program, delete files, reformat disks, crash network, destroy
critical data or embark on other damage to the host machine. Malwares are classified into
(Ojugo and Yoro, 2020; Ye et al, 2008; Szor, 2005; Mishra, 2003; Orr, 2006; 2007):

 Simple virus that replicates itself when launched to gain control of a host machine by
attaching copies of itself to another program as it spreads. It then transfers control back
to host program. It can be detected through scan for a defined sequence of bytes, known
as a signature

 Encrypted viruses scrambles its signature, making it unrecognizable at execution. Its
decryption routine transfers control to its decrypted virus body so that each time it infects
a new program, it makes copy of both the decrypted body and its related decryption
routine. It then encrypts a copy and attaches both to a target system. It uses an encryption
key to encrypt its body. As the key changes, it scrambles its body so that virus appears
different from one infection to another. Such virus is difficult to detect via signature.
Thus, antivirus must scan for a constant decryption routine.

 Polymorphic consists of a scrambled body, mutation engine and decryption routine. The
decryption routine gains control to decrypt both its body and mutation engine. It then
transfers control to the scrambled body to locate a new file to infect. It copies its body
and mutation engine into RAM, and invokes its mutation engine to randomly generate
new decryption routine to decrypt its body with little or no semblance to the previous
routine. It then appends this newly encrypted body, a mutation engine and decryption
routine to the newly infected file. Thus, the encrypted body and the decryption routine,
varies from one infection to another. With no fixed signature and decryption routine, no
two infections is alike.

 Metamorphic avoid detection by rewriting completely, its code each time it infects a new
file. Its engine accomplishes this code obfuscation and metamorphism, which in most
cases – is 90% of its assembly language codes (Singhal and Raul, 2012; Rabek et al, 2003).

1.1. Metamorphic: An Overview

Metamorphics transform its codes as they propagate to avoid detection by using obfuscation
methods to alters its behaviour when it detects its execution within virtual machine (sandbox)
as means to challenge a deeper analysis (Bolton and Head, 2002; Brause et al, 1999). Virus
writer use the weaknesses in antiviruses, as limited to static and dynamic analysis, and attacks
the following: (a) data flow, (b) control flow graph generations, (c) procedure abstract, (d)
property verification, and (e) disassembly – all means to counter scans, to identify such
metamorphic viruses (Burge and Shawe-Taylor, 2001). To mutate its code generation,
metamorphic analyse their own codes and must re-evaluate the mutated codes generated
(since complexity of transformation in the previous generation has a direct impact on its
current state, how a virus analyses and transforms code in its current generation). Thus, they
employ code conversion algorithm that helps them detect their own obfuscation and
reordering (Delamaire and Abdou, 2009; Filiol, 2005). Thus, rather than use encryption,
metamorphic can change their code structure and appearances while keeping its functionality
intact. It does this via code obfuscation methods as in fig 2.

Its engine reads in a virus executable, locates code to be transformed using its
locate_own_code module. Each engine has its transformation rule that defines how a
particular opcode or a sequence of opcodes is to be transformed. The decode module extracts
the rules by disassembling the codes and passing it onto the next module. The analyze
module analyses the current copy of the virus and determines what transformations must be

Locate

own

code
Decode Analyze Mutate Attach

Figure 2. Distinct Signature of Metamorphic

Virus

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 14 of 23

applied to generate the next morphed copy. The mutate module performs the actual
transformations by replacing an instruction (set) with the other its equivalent code; While,
Attach module attaches the mutated or transformed copy to a host (Dheepa and Dhanapal,
2009; Duman and Ozcelik, 2011; Grimes, 2001; Hashemi et al, 2008; Sung et al, 2004; Desai,
2008; Walestein et al, 2007; Wong, 2006).

Khin (2019) A metamorphic engine may consist of: (a) internal disassemble to disassemble
binary codes, (b) a shrinker replaces two or more codes with its single equivalent, (c) an
expander replaces an instruction with many codes that performs same action, (d) a swapper
reorders codes by swapping two/more unrelated codes, (e) a relocator assigns and relocate
relative references such as jumps and call, (f) garbager (constructor) inserts whitespaces (do-
nothing codes) to the program, and (g) cleaner (destructor) undoes actions of a garbager by
removing whitespaces instructions. Some major feats of an effective metamorphic engine
includes: (i) must be able to handle any assembly language opcode, (ii) shrinker and swapper
must be able to process more than one instruction concurrently, (iii) garbager is used
moderately, not to affect actual instructions, and (iv) swapper analyzes each instruction so as
not to affect next instructions’ execution (Kim et al, 2002; Maes et al, 2017; Malek et al, 2008;
Venkatesan, 2006; Konstatinou, 2008).

1.2. Call for Papers and Word Count [Subheading 11pt, Garamond, Italic, Justified]

Metamorphic engine uses code obfuscation to yield morphed copies of original program.
Obfuscated code is more difficult to understand and can generate different looking copies of
a parent file as it operates on both control flow and data section of a program (Marane, 2011).
Code obfuscation is achieved via (Nigrini, 2011; Borello and Me, 2008):

● Register Usage Exchange/Renaming – modifies the register data of an instruction
without changing the codes itself, which remain constant across all morphed copies.
Thus, only the operands changes.

● Dead Code inserts do-nothing (whitespace) codes that do not affect execution via a block
or single instruction so as to change codes’ appearance while retaining functionality.

● Subroutine Permutation aims to reorder subroutines so that a program of many
subroutines can generate (n-1)! varied routine permutations, whose addition will not
affect its functionality as this is not important for its execution.

● Equivalent Code Substitution replaces instruction with its equivalent instruction (or
blocks). A general task can be achieved in different ways. Same feat is used in equivalent
code substitution.

● Transposition/Permutation – modifies program execution order only if there is no
dependency amongst instructions.

● Code Reorder inserts unconditional and conditional branch after each instruction (or
block), and defines branching instructions to be permuted so as to change the programs’
control-flow. Conditional branch is always preceded by a test instruction which always
forces the execution of the branching instruction.

● Subroutine Inline/Outline is similar to dead code insertion in that subroutine call are
replaced with its equivalent code as Inline inserts arbitrary dead code in a program; while
outline converts block of code into subroutine and replace the block with a call to the
subroutine. It essentially does not preserve any logical code grouping.

1.3. Study Motivation

Study is motivated thus (Stolfo et al, 2015; Ojugo and Eboka, 2021; Ojugo and Oyemade,
2021; Noreen et al, 2008):

1) With detection mechanisms broadly classified into: (a) signature-based scans for
signature, and to evade it – virus makers create new virus strings that can alter their
structure while keeping its functionality via code obfuscation method, and (b) code
emulation creates sandbox or virtual machine, so that files are executed within it and

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 15 of 23

scanned for virus. Once the virus is detected, it is no longer a threat – since it is running
in controlled environment that limit damage to host machine. Thus, sharing malware
detection implementation in details over public domain is quite unwise – as it will
continually serve to further equip adversaries with adequate data required to evade
detection.

2) The complex, dynamic and chaotic nature of fraudulent transactions using malware
intrusion acts, and its range of complications as providing a backdoor to allow for other
crime makes imperative and critical, early and accurate detection. Supervised detection
alone via careful monitoring and management of network is insufficient as intruders
often evade such as it often yields inconclusive results for unknown inputs. This leads
to increased rate of false-positives and true-negatives. Our proposed model will
effectively classify malware from genuine activities using the hybrid model as in Section
II.

3) Unavailability of fraud datasets and its censored results – makes fraud detection
techniques and studies difficult to assess. Dataset also consist of ambiguities, imprecision,
noise and impartial truth that must be resolved via robust search in the bid to classify
observations and expected values effectively as in Section(s) II and III respectively

4) Classification via predictive models is a complex and difficult task due to its chaotic and
dynamic nature. Thus, we employ unsupervised model to resolve effectively and
efficiently, statistical dependences and conflict imposed on the model by dataset used in
approximating the data feats of interest.

5) Use of hill-climbing methods often has speed constraint imposed on it as the solutions
are often trapped at local maxima. This is resolved with hybridization of statistical
methods as in Section III/IV. Also, search for optimal via evolutionary heuristics can be
quite cumbersome (though no one method yields better optimal than hybrids). Model
must also resolve the statistical dependencies imposed on it by hybridization.

6) Search for optimal solution, may also yield overtraining and over-fitting of the model as
it aims to find underlying probability of data feat(s) of interest. Also, improper selection
of feats may also lead to over-parameterization.

7) Some model aim at a single suspicion score to globally classify statistical fraud. Studies
show however, that some cases may be a result of true-negatives and false-positives
scores as resolved in Section III.

Our proposed genetic algorithm trained neural net will employ unsupervised (improved)
classification method that will help propagate observed data in model as it seeks data feats of
interest to yield an output.. Evolutionary models have achieved great success in their
enhancement for accurate prediction in its search for optimal solution, chosen from a set of
possible solution space, to yield an output that is guaranteed of high quality and void of
ambiguities. These models, further tuned can become robust and perform quantitative
processing to ensure qualitative knowledge and experience, as its new language (Murad and
Pinkas, 1999; Ojugo et al, 2013; Ojugo and Yoro, 2021; Kandeeban and Rajesh, 2007).

2. Literature Review

2.1. Data Gathering and Population

Our dataset contains 33,000 records of intrusion rules. Each record has 23-fields and our
nondisclosure agreement prohibits us from revealing the details of the database schema as
well as the contents of the data. But, it suffices to know that it is a common schema used by
banks in Africa and Nigeria as part of the harmonization scheme. It contains information
that banks deem important for identifying fraudulent transactions. The dataset was already
classified into fraudulent or non-fraudulent classes. From records, 38.2% are fraud
transactions (emanating from product transaction, asset misappropriation, corruption and
financial statement fraud). The sampled data is for a 24-month period. Note that the number

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 16 of 23

of fraud records for each month varies, and the fraud percentages for each month are
different from the actual real-world distribution (Lakhotia et al, 2004).

2.2. Data Conditioning and Preprocessing

Here, we seek to know if (Perez and Marwala, 2011):

a. First, do we use the original data schema as is or do we condition (pre-process) the data
by computing aggregate statistics or discretize certain fields? In our experiments, we
removed several redundant fields from the original data schema. This helped to reduce
the data size, thus speeding up the learning programs and making the learned patterns
more concise. We have compared the results of learning on the conditioned data versus
the original data, and saw no loss in accuracy.

b. Since the data has a skewed class distribution (20% fraud and 80% non-fraud), can we
train on data that has (artificially) higher fraud rate and still compute accurate fraud
patterns? And what is the optimal fraud rate in the training data? Pre-analysis experiments
have shown that the training data with a 50% fraud distribution produces the best
classifiers.

c. What percentage of the total available data do we use for our learning task? Most machine
learning algorithms require the entire training data be loaded into the main memory. With
our database very large, it is impractical. More importantly, we wanted to demonstrate
that meta-learning can be used to scale up learning algorithms while maintaining the
overall accuracy. In our experiments, only a portion of the original database was used for
learning (details provided in the next section).

d. How do we validate and test our fraud patterns? In other words, what data samples do
we use for validation and testing? In our experiment, the training data were sampled from
earlier months, the validation data (for meta-learning) and the testing data were sampled
from later months. The intuition behind this scheme is that we need to simulate the real
world environment where models will be learned using data from the previous months,
and used to classify data of the current month.

e. How do we evaluate a classifiers? Its accuracy is important but even a dummy algorithm
can achieves 80% accuracy. For malware detection, its catching rate and false alarm rate
are the critical metrics. A low catch-rate means that a large number of transactions will
go through the system and cost users more money. Conversely, a high false alarm rate
means that a large number of genuine rules will be blocked and human intervention is
required to authorize such rules. Ideally, a cost function that takes into account both the
True and False Positive rates should be used to compare the classifiers. For lack of cost
information, we rank our classifiers using first the detection rate and the false alarm rate.
Implicitly, we consider fraud catching rate as much more important than false alarm rate
(Ojugo and Eboka, 2018a; 2018b, 2019; Tobiyama et al, 2016; Ojugo and Ekurume,
2021).

From original dataset, we prepared the data as suitable for use by the model by removing
redundant fields. This helps to reduce the data size as well as speed up the learning heuristics,
simplified the learning patterns and made the learned patterns more concise (as adapted from
Stolfo et al, 2015). We also compared results of learning between our suitable data versus the
original data, and saw no loss in accuracy. Also, observed data had a skewed distribution of
34% fraud and 66% non-fraud). We adopt 34% fraud class distribution as complete dataset
(training data for fraud is always insufficient and we are not expecting an artificially, higher
fraud rate to accurately compute suspicion score for fraud patterns). We also must determine
suspicion score for each rule generated by the rule-based model in conjunction with the GA
operators to help optimize functions for our training data. And though there are no rules for
splitting data, we split it as 50% training, 25% cross-validation and 25% testing for fraud
distribution, which also yielded the best classifier for the model. Thus, we demonstrate that
even with outliers and noise in dataset and with imprecision and ambiguities applied at its

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 17 of 23

input, model effectively classifies transactions into its proper classes. Thus, GANN
effectively scales up learning algorithms void of over-parameterization, over-training and
over-fitting of data feats; while maintaining overall performance accuracy (Ojugo and Eboka,
2019; 2020a; 2020b; 2020c; Xu et al, 2007).

2.3. Experimental Memetic Ensemble

The proposed model cum ensemble consists of these parts (Ojugo and Yoro, 2020; 2021;
Wheeler and Aitkens, 2019):

a. Knowledgebase – consists of observed, historic structured data feats. The dataset is a
record of fraudulent malware intrusion transactions stored and converted as fuzzy if-
then ruleset using optimized membership functions. The rule-based system consists of
classifier to propagate the IF-THEN rule values of selected data, enhanced them as
predefined variables classification into intrusion types for fraud detection. Its houses the
optimized universe discourse values as represented by fuzzy-if-then, linguistic variables
(rule-based) as selected data feats.

b. Inference engine – consists of the memetic algorithm (i.e. the hybrid, rule-based genetic
algorithm trained neural network model). The neural network is constructed using the
Jordan network, and seeks to provide a self-learning ability, optimized by the CGA
optimizer that recombines and mutates the rule-based fuzzy dataset to train and test the
system so that it autonomously classify diabetes into its class types. Conversely, the
Genetic Algorithm helps train the neural net so that combined – they effectively optimize
our collated-answers within the tuned fuzzy rules values in other to yield a centralized,
fuzzy-scaled function boundary in determining high/low degree membership function.
Thus, the inference engine infers conclusion derived from genetic algorithm trained
neural network from the selected data feats encoded as fuzzy-if-then conditions with
possible outcomes and consequent action upon criteria being met.

c. Decision support– consists of the predicted output and the output database that is
updated automatically in time as patients are diagnoses as long as it encounters and read
sin new data. The decision support predicts system output based on the cognitive and
the emotional filers as display by the output device. This is seen in fig 1.

The experimental ensemble is initialized with the if-then rules as individuals, whose fitness is
computed. 30-individuals are then selected via tournament method as new pool. It then
determines mating individuals to yield solutions. We use a multi-point crossover and mutation
to help the network to learn all the dynamic and non-linear feats in the dataset (as feats of
interest). With mutation, suspicion score for each rule between 1-to-30 is then randomly
generated using Gaussian distribution corresponding to crossover points (all genes are from
single parent). As new parents contribute the rest to yield new individuals whose genetic
makeup is a combination of both parents, mutation is also applied to yield 3-random genes.
These further undergo mutation and are then allocated new random values that still conform
to the belief space. These random values will range between 0 and 1, which yields the suspicion
score for each transaction as generated for each account holder (Syeda et al, 2002; Sylla and
Wild, 2011; Vooshoghi et al, 2019).

The number of mutation applied depends on how far GA is progressed (how fit is the fittest
individual in the pool), which equals fitness of the fittest individual divided by 2. New
individuals replace old with low fitness so as to create a new pool. Process continues until
individual with a fitness value of 0.8 is found – indicating that the solution has been reached
(Ojugo and Ekurume, 2020; Ojugo and Otakore, 2018; 2020). Initialization and selection via
ANN ensures that first 3-beliefs are met; mutation ensures fourth belief is met. Its influence
function influences how many mutations take place, and the knowledge of solution (how close
its solution is) has direct impact on how algorithm is processed. Algorithm stops when best

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 18 of 23

individual has fitness of 0 (Ojugo and Otakore, 2021; Ojugo and Oyemade, 2021; Phua et al,
2007; Stolfo et al, 2000).

3. Result Findings and Discussion

3.1. Result Findings

For malware detection, the performance rating of any detection mechanism is in its fraud
catching rate and its false alarm rate. These are critical metrics such that a low fraud catching
rate implies that a large number of fraudulent transactions will go through the system; Thus,
costing the banks a lot of money (and the cost will eventually be passed to the consumers.
Also, a high false alarm rate implies that large number of legitimate transactions will be
blocked by the detection system. Thus, supervised intervention, monitoring and management
will then be required to authorize transactions. This will frustrate many customers, while also
adding operational costs. Also, the malware detection rate is more important and critical than
the false-alarm rate (true-negatives and false- positives). Ideally, a cost function that takes into
account true-negatives and false-positive rates, should be used to compare the classifiers. For
lack of cost data, we rank our classifiers using first the fraud catching rate as in table 1.

Table 1. Average Performance at each 1000th Generation

Generations Average Fitness

0 0.0000

1000 0.6707

2000 0.7274

3000 0.6781

4000 0.6650

5000 0.8048

Performance is evaluated via computed values: mean square error, coefficient efficiency as
well as on classification accuracy, false-positive and true-negative rates as in table 2 below
(when compared to variant models):

Table 2. Model Convergence Performance Evaluation

Model MSE COE Classification Accuracy False Positive True Negative

Fuzzy Rule 73% 27% 18.2%

ANN 0.230 0.310 0.82 10.96% 4.59%

Profile-HMM 0.134 0.280 0.90 12% 9.7%

Proposed Memetic Model 0.313 0.219 0.96 9% 5%

Figure 4. Evolution of Parameters in Time showing Convergence in Solution

After training and testing, compared to the models ANN, CGA and rule based system, the
results are as follows: (a) ANN was run 24times and it took 223seconds to find solution after
98- iterations (best) and its fraud catching rate ranks at 76%. But, its demerit is that its solution
is often trapped at local maxima, (b) GA was run 15-times to eradicate biasness and solution
was found each time. It took 98seconds to find the solution after 123-iterations (best) and its

0

0,2

0,4

0,6

0,8

1

0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 F
it

n
e

ss

Generations

Evolution over time

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 19 of 23

fraud catching rate is 76%. Its convergence time depends on how close the initial population
is to the solution as well as on the mutation applied to the individuals in the pool. Its demerit
is that it seeks global optima (in this case, a single rule that can be applied to all transactions.
This is in agreement with Ojugo and Yoro (2020; 2021). This would be appropriate if the
transaction platforms are not considered as user are allowed to make transactions from
various places – using varying devices that grants them access to their account at any point
in time, and (c) CGANN with rule-based pre-processor hybrid was run 152times and its time
varied between 29- and 245seconds to find solution after 102-iterations (best) and its fraud
catching rate ranks at 91%. Its solution was made even closer using the fuzzy variable dataset
as a pre-processor (agrees with Ojugo et al, 2014; 2015a; 2015b; Okobah and Ojugo, 2018).

3.2. Result Findings

Our hybrid memetic algorithm employed the fuzzy universe discourse linguistics and fuzzy
system as a preprocessor. In the design, building and implementing if such hybrid – we took
cognizance that genetic algorithm will help speed up the ANN to avoid it being trapped at
local maxima as well as in region of multi-modal local maxima. This will enable the model
yield robust optima in the shortest amount of time. The fuzzy system will help better
represent variables and data values in the model. Hybrids have proven to be intelligent
modules to transform transaction with adaptive results that provides potential model for
fraud detection. Its generated rule set has an accuracy of 92%, sensitivity of 91%, and failure
analysis (true-negative and false-positive rate) of 14% respectively. However, the extracted
rules are sound and agree with outcome of relevant fraud detection norms and studies.
Antivirus often impairs system performance, and incorrect decision may lead to security
breach as it runs at the kernel of the operating system. If an antivirus uses heuristics, its
success depends on the right balance between positives and negatives. Today, malware may
no longer be executables. Macros can present security risk and antivirus heavily relies on
signature-detection. Metamorphic and polymorphic viruses, evades and makes signature
detection, quite ineffective.

4. Summary and Conclusion

Hybrids are quite difficult to implement and explore – even though they always yield optimal
and better solutions. However, care must be employed during parameter selection to avoid
over-fitting, over-parameterization and over-training. Also, the correctly formatted
(explored) historic dataset must be encoded through the underlying algorithm’s structured
learning for robustness and code reuse as well as allow for model’s adaptability and flexibility.
This will in turn help to address the inherent issues of statistical dependencies imposed on
the model by the various models fused for hybridization. However, proper encoding schemes
must be selected to help resolve the conflicts in the data feats of interest – as most systems
may not adequately highlight the implications of such in a multi-agent and multi-modal
populated model. This is because the agents as they traverse the network or system – often
can create their own behavioural rules on the dataset used – so that in most cases, they display
results of complex chaos, non-linearity and dynamism (as expected) of the underlying
probabilities of data feats of interest. To help curb this, we employed Cultural-GA, which
ensures via its belief functions that all conditions to yield better generation is met with the
processes of crossover and mutation applied.

References

Bolton, R and Hand, D., (2001). Unsupervised Profiling Methods for Fraud Detection. Credit

Scoring and Credit Control VII, 22, pp149-178

Bolton, R.J and Hand, D.J., (2002). Statistical fraud detection: a review, Statistical Science, 17(3),

pp235-255, 2002

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 20 of 23

Borello, J and Me, L., “Code obfuscation techniques for Metamorphics, 2008, [online]: available

at www.springerlink.com/content/233883w3r2652537

Brause, R., T. Langsdorf, M. Hepp, (1999). Neural Data mining for credit card fraud

detection, Proc. IEEE Int. Conf. Tools with Artificial Intelligence, pp. 103-106, 1999.

Burge, P and Shawe-Taylor, J., (2001). An Unsupervised Neural, Network Approach to

Profiling the Behaviour of Mobile Phone, Users for Use in Fraud Detection. J. of

Parallel and Distributed Computing 61: 915–925

Delamaire, L and Abdou, H., (2009). Credit card fraud and detection techniques: a review, Banks

and Bank Systems, 4(2), pp57-67

Daoud, E and Jebril, I., (2008). Computer Virus Strategies and Detection Methods, International

Journal of Open Problems Computational Mathematics, 1(2), [web]:

www.emis.de/journals/IJOPCM/files/IJOPCM1.2.8.pdf

Desai, P., “Towards an undetectable computer virus, Masters Thesis, Department of Computer

Science, San Jose State University, 2008

Dheepa, V and Dhanapal, R., (2009). Analysis of Credit Card Fraud Detection Methods,

International Journal of Recent Trends in Engineering, 2(3), pp126-135.

Duman, E.M and Ozcelik, H., (2011). Detecting credit card fraud by genetic algorithm and

scatter search. Expert Systems with Applications, 38: pp13057–13063

Fawcett, T., (1997). AI Approaches to Fraud Detection and Risk Management, AAAI

Workshop. Technical Report WS-97-07, AAAI Press.

Filiol, E., “Computer Viruses: from Theory to Applications”, New York, Springer, 2005, ISBN 10:

2287-23939-1.

Ghosh, S and Reilly, D.L., (1994) Credit Card Fraud Detection with a Neural-Network, Proc.

27th Int. Conf. System Sciences: Information Systems: Decision Support and

Knowledge-Based Systems, 3, pp.621-630

Grimes, R., “Malicious Mobile Code: Virus Protection for Windows”, O'Reilly and Associates,

Inc., Sebastopol, CA, USA, 2001.

Hashemi,S., Yang, Y., Zabihzadeh, D and Kangavari, M., “Detecting intrusion transactions in

databases using data item dependencies and anomaly analysis”, Expert Systems, 2008, Vol.

25, No. 5, p460, doi:10.1111/j.1468-0394.2008.00467.

Kandeeban, S. S. and Rajesh, R. S., (2007): GA for framing rules for intrusion detection, J. Comp.

Sci and Security., 7(11), ISSN:1738-7906, PP.285-290.

Khin, E.M., (2019). Employing artificial intelligence to minimize internet fraud. Int. Journal

Cyber Society & Education, 2(1), pp.61-72, [web]: academic-

journals.org/ojs2/index.php/IJCSE/article/viewFile/753/17

Kim, M.J and Kim, T.S., (2002). A Neural Classifier with Fraud Density Map for Effective

Credit Card Fraud Detection, Proc. International Conf. Intelligent Data Eng. and

Automated Learning, pp. 378-383, 2002

Konstantinou, E., “Metamorphic virus: analysis and detection”, Technical report (RHUL-MA-

2008-02), Dept. of Mathematics, Royal Holloway, University of London, 2008.

Lakhotia, A., Kapoor, A and Kumar, E.U., “Are metamorphic computer viruses really invisible?”,

2004, Part 1, Virus bulletin, p5-7.

Maes, S., K. Tuyls, B. Vanschoenwinkel, B. Manderick, (2017). Credit Card Fraud Detection,

Vrije Universiteit Brussel – Department of Computer Sci., Pleinlaan 2, B-1050,

Belgium. [web]:personeel.unimaas.nl/k-tuyls/publications/papers/maenf02.pdf

Malek, W.M., K. Mayes, K. Markantonakis, (2008). Fraud Detection and Prevention in Smart

Card Based Environments Using Artificial Intelligence. Int. Conf. CARDIS 2008,

London, UK, September 8-11, 2008.

http://www.springerlink.com/content/233883w3r2652537
http://www.emis.de/journals/IJOPCM/files/IJOPCM1.2.8.pdf
http://www.academic-journals.org/ojs2/index.php/IJCSE/article/viewFile/753/17
http://www.academic-journals.org/ojs2/index.php/IJCSE/article/viewFile/753/17
http://www.personeel.unimaas.nl/k-tuyls/publications/papers/maenf02.pdf

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 21 of 23

Marane, A., (2011). Utilizing Visual Analysis for Fraud Detection, Understanding Link

Analysis, [web]: linkanalysisnow.com/2011/09/leveraging-visual-analytics-for.html

Minahan, T., (2013). Fraud detection and prevention. [web]:

nebhe.org/info/pdf/tdbank_breakfast/Fraud_Prevention_and_Detection.pdf

Mishra, P., (2003). Taxonomy of software unique transformations, Available on [web]:

www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc

Murad, U and Pinkas, G. (1999). Unsupervised Profiling for Identifying Superimposed Fraud.

Proc. of PKDD99.

Nigrini, M. (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting

Investigation. Hoboken, NJ: John Wiley & Sons Inc. ISBN 978-0-470-89046-2.

Available from [online]: http://www.wiley.com/WileyCDA/WileyTitle/productCd-

0470890460.html

Noreen, S., Ashraf, J and Svrenahak, K., “Malware detection using evolutionary models”,

International Journal of Virology, 2008, Vol. 23, No. 2, p123-132

Ojugo, A.A and Eboka, A.O,, (2015). An intelligent hunting profile for evolvable metamorphic

malware”, IEEE African Journal of Computing and ICT, 2015, 8(1-2), p181.

Ojugo, A.A and A.O. Eboka., (2018a). Comparative evaluation for high intelligent performance

adaptive model for spam phishing detection, Digital Technology, Vol. 3, No.1: pp. 9-15,

doi: 10.1269/dt-3-1-1, 2018

Ojugo, A.A and A.O. Eboka., (2018b). Modeling market basket associative rule mining approaches

using deep neural net, Digital Technology, 3(1), pp.1–8, doi: 10.12691/dt-3-1-1

Ojugo, A.A and A.O. Eboka., (2019). Signature-based malware detection using approximate Boyer

Moore string matching algorithm, International Journal of Mathematical Sciences and

Computing, 3(5): pp49-62, doi: 10.5815/ijmsc.2019.03.05

Ojugo, A.A and A.O. Eboka., (2020a). Memetic algorithm for short messaging service spam filter

text normalization and semantic approach, International Journal of Information &

Communication Technology, 9(1), pp. 13 – 27, doi: 10.11591/ijict.v9i1.pp9-18

Ojugo, A.A and Eboka, A.O., (2020b). Empirical evaluation on comparative study of machine

learning techniques in detection of DDoS, Journal of Applied Science, Engineering,

Technology & Education, 2(1), pp18–27, doi: 10.35877/454RI.asci2192

Ojugo, A.A., Eboka, A.O., (2020c). Modelling behavioral evolution as social predictor for the

coronavirus contagion and immunization in Nigeria, J. of Applied Sci., Engr., Tech. & Edu.,

3(2): pp37–45, doi: 10.35877/454RI.asci130

Ojugo, A.A., Eboka, A.O., (2021). Empirical Bayesian network to improve service delivery and

performance dependability on a campus network, International Journal of Artificial

Intelligence, 10(3), pp623-635

Ojugo, A.A., Ekurume, E., (2021). Predictive intelligence decision support model in forecasting of

the diabetes pandemic using a reinforcement deep learning approach, International Journal

of Education and Mgt. Engineering, 2021, 11(2), pp.40-48, doi: 10.5815/ijeme.2021.02.05

Ojugo, A.A and Otakore, D.O., (2018). Improved early detection of gestational diabetes via

intelligent classification models: a case of Niger Delta, J. of Computer Science &

Application, 6(2), pp. 82-90, doi: 10.12691/jcsa-6-2-5

Ojugo, A.A., Otakore, O.D., (2020). Forging an optimized Bayesian network model with selected

parameter for detection of the Coronavirus in Delta State of Nigeria, J. of Applied Sci.,

Engr., Tech. & Edu., 3(1): pp37–45, 2020, doi: 10.35877/454RI.asci2163

Ojugo, A.A and Otakore, D.O., (2021). Forging optimized Bayesian network model with selected

parameter for detection of Coronavirus in Delta State Nigeria, Journal of Applied Science,

Engineering, Technology & Education, 3(1): pp37–45, doi: 10.35877/454RI.asci2163

http://linkanalysisnow.com/2011/09/leveraging-visual-analytics-for.html
http://www.nebhe.org/info/pdf/tdbank_breakfast/Fraud_Prevention_and_Detection.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-470-89046-2
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470890460.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470890460.html

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 22 of 23

Ojugo, A.A., Oyemade, D.A., (2021) Boyer Moore string-match framework for a hybrid short

messaging service spam filtering technique, IAES International Journal Artificial

Intelligence, 10(3): pp519-527

Ojugo, A.A and Yoro, R.E., (2020). Empirical solution for an optimized machine learning

framework for anomaly-based network intrusion detection, Technology Report of Kansai

University, TRKU-13-08-2020-10996, 62(10): pp6353-6364

Ojugo, A.A and Yoro, R.E., (2021). Forging a deep learning neural network intrusion detection

framework to curb distributed denial of service attack, International Journal of Electronics

and Computer Engineering, Vol. 11, No. 2, pp 128-138

Ojugo, A.A., Allenotor, D. D.A. Oyemade., O. Longe., C.N. Anujeonye., (2015a). Comparative

stochastic study for credit-card fraud detection models, African Journal of Computing and

ICT, 8(1-2): pp15 –24, 2015.

Ojugo, A.A., Eboka, A., R.E. Yoro., M.O. Yerokun., F.N. Efozia., (2015b). Framework design for

statistical fraud detection, Mathematics and Computers in Sciences and Engineering, 50:

176-182, ISBN: 976-1-61804-327-6.

Ojugo, A.A., Ben-Iwhiwhu, E., O.D. Kekeje., M. Yerokun., I. Iyawah., (2014). Malware

propagation on time varying networks: comparative study, International Journal of Modern

Education and Computer Science, 6(8), pp. 25-33, doi: 10.5815/ijmecs.2014.08.04

Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O and Eboka, A.O., “Hybrid artificial neural

network gravitational search algorithm for rainfall runoff”, Progress in Intelligence

Computing and Applications, 2013b, Vol. 2, No. 1, doi: 10.4156/pica.vol2.issue1.2, p22.

Okobah, I.P., Ojugo, A.A., (2018). Evolutionary memetic models for malware intrusion detection:

a comparative quest for computational solution and convergence, IJCAOnline International

Journal of Computing Application. 179(39), pp34–43

Orr, “The viral Darwinism of W32.Evol: an in-depth analysis of a metamorphic engine”, 2006,

[online]: available at http://www.antilife.org/files/Evol.pdf

Orr, “The molecular virology of Lexotan32: Metamorphism illustrated”, 2007, [online]:

www.antilife.org/files/Lexo32.pdf

Phua, C., D. Alahakoon, V. Lee, (2004). Minority Report in fraud detection: classification of

skewed data, ACM SIGKDD Explorations Newsletter, 6(1), pp. 50-59, 2004

Phua, C., V. Lee, K. Smith, R. Gayler, (2007). A comprehensive survey of data mining-based

fraud detection research, [web]: www.bsys.monash.edu.au/people/cphua/ .

Perez, M and Marwala, T., (2011). Stochastic optimization approaches for solving Sudoku, IEEE

Transaction on Evol. Comp., pp.256–279.

Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R., “Detection of injected, dynamic

generated and obfuscated malicious code”, In Proceedings of ACM Workshop on Rapid

Malcode, 2003, p76.

Singhal, P and Raul, N., “Malware detection module using machine learning algorithm to assist

centralized security in enterprise network”, International Journal of Network Security and

Applications, 2012, 4(1), doi: 10.5121/ijnsa.2012.4106, p61

Stolfo, S. J., Fan, D. W., Lee, W., Prodromidis, A and Chan, P. K. (2000). Cost-Based

Modeling for Fraud and intrusion detection: results from the JAM Project, In Proc.

DARPA Information Survivability Conf. and Exposition, vol. 2, pp. 130-144.

Sung, A., Xu, J., Chavez, P., Mukkamala, S., “Static analyzer of vicious executables”, Proceedings

of 20th Annual Computer Security Applications Conference, IEEE Computer Society, 2004,

p326-334.

Syeda, M., Zhang, Y. Q. and Pan, Y. (2002). Parallel Granular Networks for Fast Credit Card

Fraud Detection, Proc. IEEE Int’l Conf. Fuzzy Systems, pp. 572-577.

http://www.antilife.org/files/Evol.pdf
http://www.antilife.org/files/Lexo32.pdf
http://www.bsys.monash.edu.au/people/cphua/

Ojugo, et.al., ARRUS Journal of Engineering and Technology, Vol. 2, No. 1 (2022)
https://doi.org/10.35877/jetech613

 ISSN : 2776-7914 (Print) / 2807-3045 (Online)

This open access article is distributed under a Creative Commons Attribution (CC-BY-NC) 4.0
license.

Page 23 of 23

Sylla BS, Wild CP. A million Africans a year dying from cancer by 2030: What can cancer research

and control offer to the continent? Int J Cancer 2011; 130 (2): 245–250.

Szor, P., “The Art of Computer Virus Research and Defense”, Addison Wesley Symantec Press.

2005, ISBN-10: 0321304543, New Jersey.

Tobiyama, S., Y. Yamaguchi., et al., (2016). Malware detection with deep neural network using

process behaviour, IEEE 40th Annual Computer Software and Applications Conf., Vol. 2,

pp. 577-582, 2016

Vatsa, V., Sural, S. and Majumdar, A. K. (2005). A game-theoretic approach to credit card

fraud detection, In. Proc. of Int. Conf. Information Systems Security, pp. 263-276.

Venkatesan, A., “Code obfuscation and metamorphic Virus Detection”, Master thesis, San Jose

State University, 2006,

www.cs.sjsu.edu/faculty/students/ashwini_venkatesan_cs/report.doc

Voosoghi, R.B., Ghaffari, M and Razin, R., (2019). Evaluation of the Efficiency of Adaptive Neuro

Fuzzy Inference System in modeling of the Ionosphere Total Electron Content Time Series

Case Study: Tehran Permanent GPS Station, Journal of Geomatics Science and Tech., Vol.

8, no.4, Pp. 109-119, 2019

Walenstein, R., Mathur, M., Chouchane R., and Lakhotia, A., “The design space of metamorphic

malware”, In Proceedings of 2nd Int. Conference on Information Warfare, 2007, p243.

Wheeler, R., Aitken, S. (2019). Multiple Algorithms for Fraud Detection Artificial intelligence

Applications, The University of Edinburg, Scotland, pp. 1-12, [web]:

http://home.cc.gatech.edu/ccl/uploads/45/multiple-algorithms-for-fraud.pdf

Wong, W., “Analysis and Detection of Metamorphic Computer Viruses”, Master’s thesis, San Jose

State University, 2006, http://www.cs.sjsu.edu/faculty/students/Report.pdf

Xu, J., Sung, A. H. & Liu, Q. (2007). Behaviour Mining for Fraud Detection, Journal of

Research and Practice in Information Technology. 39(1), pp. 3–18

Ye, Y., Wang, D., Li, T and Ye, D., “Intelligent malware detection based on association mining”,

Journal of Computer Virology, 2008, Vol. 4, No. 4, p323–334, doi: 10.1007/s11416-008-

0082-4.

Zakorzhevsky, E.R., “Monthly malware statistics”,

2011,[online]:www.securelist.com/en/analysis/204792182/Monthly_Malware_Statistics_J

une_2011.

Zink, T., (2009). Network security algorithms, Konstanzer Online Publikationss-System,

www.nbn-resolving.de/urn:nbn:de:bsz:352-175988

http://www.cs.sjsu.edu/faculty/students/ashwini_venkatesan_cs/report.doc
http://home.cc.gatech.edu/ccl/uploads/45/multiple-algorithms-for-fraud.pdf
http://www.cs.sjsu.edu/faculty/students/Report.pdf
http://www.nbn-resolving.de/urn:nbn:de:bsz:352-175988

