Computer Anxiety and Computer Attitude in Increasing Staffs’ Interest in Using the System through Perceived Usefulness and Perceived Ease of Use

Hantono*a, Thomas Sumarsan Gohb, & Partogian Sormina

a Universitas Pelita Harapan (UPH) Kampus Medan, Jl. Imam Bonjol No.6, Petisah Tengah, Medan City, North Sumatra, Indonesia
b Universitas Methodist Indonesia, Jl. Hang Tuah No.8, Madras Hula, Kec. Medan Polonia, Kota Medan, Sumatera Utara 20151, Indonesia
c Universitas Pelita Harapan (UPH) Kampus Tangerang, Jl. MH Thamrin Boulevard 1100, Kota Tangerang, Banten 15811, Indonesia

Abstract

Nowadays information technology has developed rapidly therefore the need for Information Technology (IT) has become an essential for every organization, especially in carrying out activities so that an accounting information system implemented properly, can produce reliable financial information for the company. The use of technology in information systems in running a business should consider the usability and convenience of its users so that the system becomes effective. The purpose of this study was to analyze the effects of Computer Anxiety and Computer Attitude in terms of aspects in increasing employees’ interest in operating the system through perceived usefulness and perceived ease of use. The research was conducted on employees in the company in Medan city. The number of research samples were 200 respondents selected by non-probability sampling method. Data was collected by using a questionnaire via google form and literature studies supporting this research. The method used in this study were the Structural Equation Model (SEM) using Partial Least Square (PLS) version 3.0. PLS consists of external relationships (outer model) and internal relationships (inner model), cross loading > 0.7, Composite Reliability, Convergent Validity, Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Based on the results of the analysis, it was found that computer anxiety had no effect on interest, while Computer Attitude, Perceived Usefulness, Perceived Ease of Use had an effect on interest.

Keywords: Computer anxiety, Computer attitude, Perceived Usefulness, Perceived Ease of Use, Interests.

1. Introduction

Currently information technology has developed rapidly therefore the need for Information Technology (IT) has become a necessity for every organization, especially in carrying out its activities. Changes in IT cause organizations to prepare human resources who can operate the technology. Employees as human resources can use technology as means to facilitate their work, such as using computers in completing tasks. Nowadays, technology has been applied in almost all organizations, both large and small. Technological development must be communicated appropriately for common ground of perception within the company (Sumarsan, 2020). The potential benefits of the digital economy for Indonesia are estimated to be quite large, considering that Indonesia is one of the countries with the fastest internet users in the world (Afriyadi, 2017). Not all individuals can accept a positive attitude towards the presence of computer technology, however if the advantages of the system increase interest, performance, and productivity, it will be more effective and efficient in utilizing performance time. The benefits felt by computer users were generated by the ability of being able to operate a computer (skills) and being supported organizationally. Those experiencing computer anxiety will less experienced the benefits of computers compared to those that did not experience computer anxiety. The presence of computers raises various attitudes shown by someone or is called computer attitude. Computer attitude is a person's response / reaction to the existence of a computer in the form of pleasure / displeasure.

Technostress describes stress experienced by users as a result of multi-tasking applications, continuous connectivity, information overload, multiple system changes (upgrading) and result of uncertainty, re-learning and inconvenience

* Corresponding author.
E-mail address: hantono1978@gmail.com

Quantitative Economics and Management Studies (QEMS) is licensed under an Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
impact related to continuous work, and technical problems related to the use of IT in organizations (Tarafdar et al, 2011) in (Effiyanti et al., 2014).

Previous researchers have found a phenomenon of computer anxiety (Saade et al., 2009), (Sam et al., 2005), (Rustiana, 2005). Anxiety is defined as a strong feeling of fear and concern related to a particular threatening situation (Cherrington, 1994). While computer anxiety is a person's tendency to undergo difficulties, worried, or afraid when using computers in the present or in the future (Igbaria and Parasuraman, 1989) in (Effiyanti et al., 2014).

The question in this article is whether computer anxiety affects interest; whether computer attitude influences interest; does perceived usefulness affects interest and whether perceived ease of use affects interest?

2. Literature Review

2.1. Technostress

Technostress is a discomfort condition caused by the inability of individuals to adapt to technological changes and or a condition of individual dependence on technology that causes both physical and psychological discomfort. As an expression of stress, the technostress responses from one individual to another will vary, depending on an individual's ability to adapt (Suryanto & Sasi, 2018). Technostress is a modern disease caused by the inability to cope or handle information and communication technology in a healthy manner (Ayyagari et al., 2011) specified in (Hadi, 2020). Technostress is the impact of stress experienced by users because of multi-tasking applications, continuous connectivity, information overload, repeated system changes (upgrading) and uncertainty, re-learning and the impact of discomfort associated with continuous work, and technical problems related to the use of IT in organizations (Tarafdar, Tu, & Ragu-Nathan, 2010) cited in (Setyadi & Taruk, 2019). Technostress is the excessive use of technology and will have an impact on the emergence of stress in activities which will decrease overall performance (Tarafdar, Pullins, and Ragu-Nathan, 2015) in (Mukhtar & Ismail, 2019). According to Champion cited in (Nyimas, 2019), technostress is also defined as an adaptation problem as a result of a person's inability to cope with and familiarize with information and information technology.

2.2. Computer Anxiety

According to Igbarian and Parasuraman (1989) in (Maharani, 2019) computer anxiety is a person's tendency to be difficult, worried, or afraid about using computers in the present or in the future. Rustiana (2004) in (Handayani, 2010) describes anxiety as an excessive fear that triggers a variety of self-defense behaviors, including physical movements, inner fears or confusion. A collection of definitions and interpretations of anxiety suggests that there is no definite understanding of the anxiety. Computer Anxiety is a person's tendency to be difficult, worried, anxious, or afraid of current or future computer use. Computer anxiety is an anxiety phenomenon initiated by the development of information technology (Wahyudi & Widianto, 2019).

Computer Anxiety can be defined as a reduction or, worse, avoidance toward information technology. Avoidance toward information technology has serious impact on a person. Computer anxiety is one of the technophobia in which computer is one of the technologies developed in human life (Samrotun, 2018) in (Lomagio & Fitrianti, 2022). Computer anxiety is an anxiety feeling experienced by a person when using a computer and has an impact on fear and inability to use the computer in the present and the future (Handayani et al., 2022).

2.3. Computer attitude

Computer attitude is a person's assessment or reaction toward a computer based on whether he likes the computer or not. Indicators of this variable include optimism, pessimism, and intimidation. Optimism is shown when someone believes in the presence of a computer and thinks that the computer will make his work easier and life better. On the other hand, pessimism arises because of a negative attitude regarding the existence of computers in human’s life. Furthermore, intimidation is shown when someone feels threatened by the presence of a computer because they think that the computer is complicated and difficult to operate (Handayani et al., 2022). Computer attitude is defined as a person's attitude or feelings about objects, activities, events and other people; this feeling becomes a concept that represents fond or dislike (positive, negative or neutral) of one toward something (Ernawatiningsih & Apriada, 2020).

2.4. Interest

Interest in using information technology is the level of a person's desire or intention to use information technology continuously with the assumption that the person has access to information technology (Jati, 2019:31) in (Ernawati & Noersanti, 2020). Interest is a condition of a person within the scope of subjective possibilities, including the
relationship between one and certain behaviors (Ramadhun et al., 2016). Interest in using is an activity and one’s attention focusing on a certain object because compelled to perform a behavior to achieve certain goals (Kamil, 2019) cited in (Latifah & Heny, 2021). Simamora (2002) in (Taam, 2021) put forward that interest is something personal and related with individual’s attitude interested in an object which stimulate power or encouragement to carry out a series of behaviors to approach or obtain the object. Interest is an individual’s perception of his future preference that can shape the individual’s specific behavior (McKnight, et al., 2002) cited in (Kurniawan & Subhi, 2021). Interest is an awareness from within the individual on an object, person, problem or condition and situation related to him. It indicates that interest is an awareness, consequently interest becomes a psychological aspect for individuals when paying attention and providing encouragement to do something related to certain objects (Fangalih & Baridwan, 2012) in (Kurniawan & Subhi, 2021). Interest is the tendency of an individual to be attracted or in favor to an object (Heri, 1998) in (Putra et al., 2020).

2.5. Technology Acceptance Model

Technology Acceptance Model (TAM) is one of the models designed to analyze and influence the factors that influence the acceptance of computer technology usage (Davis, 1986) in (Utami, 2019). Technology Acceptance Model (TAM) is the most widely used method in information technology research because this method is simpler and easier to implement (Surendran, 2012) in (Widodo & Putri, 2017).

Benefits of Technology Acceptance Model (Wijaya, 2006) in (Utami, 2019):

1. The use of technology can increase users’ productivity
2. The use of technology can improve users’ performance
3. The use of technology can increase efficiency processes done by users

The main purpose of TAM is to provide explanation of the determination of computer acceptance in general, to provide explanation of the behavior or attitudes of users within a population (Davis et al., 1989) in (Sayekti & Putarta, 2016). The purpose of the TAM model is to generate keywords accumulated from information technology users for evaluation purposes evaluating the next information technology development (Noulas et al., 2011) in (Subowo, 2020).

Researchers took two of the variables in TAM, namely ease of use and perceived usefulness to conduct research.

a. Perceived Usefulness

Ease of use is the degree to which one believes that using a system will face difficulties or require no effort. A system that is felt to be easier to use when compared to other systems. Ease is a system that is more likely to be accepted by users that it can affect attitudes which may indirectly affect performance (Prasetyo & Musadiq, 2014). Perceived usefulness is defined as the level of confidence that individuals, who use certain systems, will be able to improve their job performance (Venkatesh & Davis, 2000) in (Ardiyanto & Kusumadewi, 2020). The general perception of usefulness is the extent to which a person believes that using a technology will improve job performance. If one thinks that information system is useful then it will be used. And vice versa if one thinks that the information system is less useful then it will not be used (Jogiyanto 2007:114) in (Yanti & Yusuf, 2020). Perceived Usefulness can be explained as a user's perception or subjective evaluation toward the capabilities received by the technology (Naufaldi & Tjokrosaputro, 2020).

b. Perceived Ease of Use

Perception on ease of use is defined as the level of one’s trust when using a certain system, it will deal with any difficulties (Davis, 1989) in (Ardiyanto & Kusumadewi, 2020). Perception of ease of use is generally defined as the extent to which one believes that using a technology will be free of effort and if one thinks that the information system is easy to use then it will be used and vice versa if one thinks that the information system is not easy to use then it will be avoided (Jogiyanto, 2007:115) in(Yanti & Yusuf, 2020). Perceived ease of use is defined as to the extent to which one believes that they will spend less effort when using certain technologies or effortless (Caffaro et al., 2020, 2) in (Purnamasari et al., 2021). Indarsin and Ali (2017) in (Naufaldi & Tjokrosaputro, 2020) affirmed that perceived ease of use is a one's level of belief that using technology will reduce excessive effort. Perception of usefulness according to Surachman (2013) in (Amaliah et al., 2022) is a one's belief that using a certain information technology system will improve performance.
2.6. Hypothesis

2.6.1. The Influence of Computer Anxiety on Interests

Computer anxiety is related to computer anxiety which is indicated by fear every time dealing with computers. This usually arises when a one learns something new and rejection appears towards changes that have a negative effect on cognitive work (Maharani, 2019). Computer anxiety has a negative effect on attitudes in using computer, which means that the emergence of computer anxiety will make one's attitude discontented with the use of computers (Hsiao et. al., 2010) in (Widiyasari & Achadiyah, 2019). The higher the fear, the higher the anxiety experienced, while the anticipation effort will also increase, fear will lessen. Reduced fear will increase confidence and can increase interest (Widiyasari & Achadiyah, 2019). When one has a low level of computer anxiety, it will prompt one to have a strong belief that computer is useful that one will be inclined to work with the computer (Rustiana, 2005). One that is an expert will tend to have an interest in using it so it can be said that computer anxiety also has no effect toward interest in using it (Handayani et al., 2022). Based on the elucidation described above, the hypothesis can be made as follows:

\[H_1 : \text{Effect of Computer Anxiety on Interest} \]

2.6.2. The Influence of Computer Attitude on Interests

This pessimistic attitude makes one assumed that the existence of a computer does not provide any benefit because time and energy are taken up when operating computer with unsatisfactory results (Hasanah, 2020). The contented attitude that occurs to take advantage of the computer, will awaken the intention in them to use computer technology. On the other hand, one’s displeased attitude towards computer technology may result in having no intention to use computer technology (Adi & Yanti, 2018). The attitude of reaction or judgment in operating a computer is based on pleasure or displeasure in operating computer technology. This condition showed that the more positive assessment on computer, the more computer will be used well in mastering computer programs. On the contrary, if one has negative assessment of computers, it will become a threat to oneself when mastering computer programs (Amirudin & Suhartini, 2021). Based on the illustration described above, the hypothesis can be made as follows:

\[H_2 : \text{Effect of Computer Attitude on Interest} \]

2.6.3. The Influence of Perceived Usefulness on Interest

This perception is related to the benefits received by user. This perception affects interest in using a system (Wardhana, 2019). When the system had met the needs of users with the benefits and the features obtained in the application, it can generate users’ interest to utilize it (Maharani, 2020). Jogiyanto (2007:114) in (Darista & Mujilan, 2021) stated that perceived usefulness is the extent of one’s level of confidence when using a technology to improve performance. If one feels confident that the system is useful then one will use it. On the other hand, if one believes that the information system is less useful then one will not use it (Udayana & Ramadhan, 2019). The higher the benefits felt by the user, the higher the interest in using it (Latifah & Heny, 2021). Based on the explanation described above, the hypothesis can be made as follows:

\[H_3 : \text{The Effect of Perceived Usefulness on Interest} \]

2.6.4. The Effect of Perceived Ease of Use on Interests

This perception of convenience is also supported by the increasing awareness of system users about knowledge related to information technology and the internet then the simpler and easier it will be to use (Wardhana, 2019). The more one trusts a system that is user friendly, the willingness to use the system increases (Maharani, 2020). One felt a transaction is easy to do if no difficulty is experienced in carrying out the transaction (Nurmalia & Wijaya, 2018). The higher the ease to use and understand, the higher the users’ interest will be (Priambodo & Prabawani, 2016). The higher the level of users’ confidence using the application can improve performance and productivity, then the higher the interest in using the technology (Wiratama & Sulindawati, 2021). Based on the description above, the hypothesis can be made as follows:

\[H_4 : \text{The Effect of Perceived Ease of Use on Interests} \]
3. Methods

3.1. Research design

The research method is a quantitative descriptive study. According to Sugiyono (2013) in (Susilowati, 2017), descriptive research method is a research method carried out to determine the value of independent variables or more without making comparisons or combining one variable with another. Data were obtained through primary and secondary data. Primary data was directly obtained from the source through questionnaire even though the Covid-19 pandemic situation limits researchers in data collection. Secondary data used the literature review method obtained through books, journals, and previous research. The sampling technique used in this study is total sampling with consideration of the number of populations less than 100 therefore the existing population is used as a sample.

3.2 Research Framework

The research framework has described the effect simultaneously and partially between the independent variables and the dependent variable. The independent variables in this study were Computer Anxiety (X_1), Computer Attitude (X_2), Perceived Usefulness (X_3), and Perceived Ease of Use (X_4) while the dependent variable in this study was interest (Y). This framework explained the problem that is the object of this research. This conceptual framework was created to provide an overview of the research to be carried out to determine and analyze the variables which can be illustrated as figure 1.

![Research Framework](image)

Figure 1. Research Framework

3.3 Research Scope

The objects in this study are employees or staff in companies in Medan. Respondents, also the sample, were employees or staff at companies in Medan area and the types of data used in this study is primary data, namely data sourced from questionnaires.

3.4. Data Collection Technique

The data collection technique used in this research is non-probability sampling using convenience sampling technique, in which the sampling is based on the availability of elements and the ease of obtaining them. Due to the research being conducted during a pandemic, the data collection in this study was carried out by distributing questionnaires using google forms via the whatsapp application sent to employees or staff at companies in Medan city. The questionnaire contained a list of statements to be answered by respondents. The measurement scale used Likert scale with assessment range as follows:

a. Strongly Agree (SS) with a score of 5
b. Agree (S) with a score of 4
c. Disagree (KS) with a score of 3
d. Disagree (TS) with a score of 2
e. Strongly Disagree (STJ) with a score of 1

3.5. Variable Operational Definition

Computer anxiety is measured by the dimensions of fear and anticipation (Amirudin & Suhartini, 2021). Computer attitude showed the feeling of content or discontent involving one’s behavior (Adi & Yanti, 2018). Loyd & Gressard (1984) in (Adi & Yanti, 2018) stated that Computer Attitude has three indicators:
According to (Jati, 2019:31) in (Ernawati & Noersanti, 2020), interest in using information technology is the level of a one's desire or intention to use information technology continuously with the assumption that the person has access to information technology.

According to Davis (1986) in (Artina, 2019), there are 5 concepts in TAM, namely:

a. Perception of ease of use, regarding the extent to which one believes that using technology, business will run smoothly to achieve goals.
b. Perception of usability, regarding the extent to which a person believes that using technology will improve company’s performance.
c. Attitude towards the use of technology, regarding the evaluation of the users on their interest in using technology.
d. Behavioral interest in using technology, regarding a person's desire to act.
e. Use of actual technology, measured by the amount of time spent interacting with technology and the frequency of using the technology.

The five components of technostress according to Champion in (Nyimas, 2019) include:

a. Techno overload, is a situation where users of information and communication technology were forced to work faster and longer.
b. Techno invasion, is a situation where users of information and communication technology feel that they can achieve or continue to be connected which causes the work relationship and personal context to be blurred.
c. Techno complexity, is a situation where users of information and communication technology feel that their abilities are inadequate due to the complexity associated with information and communication technology. As a result, they were forced to spend time and effort to learn and understand aspects of information and communication technology.
d. Techno insecurity, is a situation where users of information and communication technology feel threatened that they will lose their jobs and even be replaced with new information and communication technology or by other people with better abilities in the field of information and communication technology compared to them.
e. Techno uncertainty, is a situation where users of information and communication technology feel uncertain and uneasy since information and communication technology continues to change and individual capabilities need to improve.

Perceived ease of use as an independent variable has 3 indicators used to assess variables using a Likert scale. The indicators consist of feeling of easy to use, feeling of easy to learn, and feeling not needing more effort when using a particular brand. These three indicators were adapted from previous research (Leon, 2018) in (Naufaldi & Tjokrosaputro, 2020).

Perceived Usefulness as an independent variable has 4 indicators that are used to assess variables using a Likert scale. The indicators consist of useful in everyday life, increasing productivity, time saving, and making life easier. These four indicators were adapted from previous research (Leon, 2018) in (Naufaldi & Tjokrosaputro, 2020)

3.6. Data Analysis Technique

The method used in this study applied Structural Equation Modeling (SEM) using the Partial Least Square (PLS) version 3.0. PLS consists of external relations (outer model) and internal relations (inner model). Several stages of testing the individual items contents includes measuring reliability (internal consistency), convergent validity, and discriminant validity.

a. Testing of individual item loads. Testing is done with Smart PLS version 3.0 which shows the loading factor on cross loading > 0.7 between indicators toward the variables and the load value must be greater for the same indicator against other variables (Jogiyanto, 2008) in (Sitio, 2021).
b. Measurement of reliability (Composite Reliability)
The reliability test can be seen from the Cronbach's Alpha value and the Composite reliability value where the criteria that must be met are the Cronbach's Alpha value > 0.6 and the Composite reliability value > 0.7 (Abdillah, 2015) in (Sitio, 2021).

c. Convergent validity testing (Convergent Validity)
 Validity test is the main criterion in a study. The validity test shows whether the research results can be accepted with certain criteria. Validity can be assessed statistically, namely convergent validity and discriminant validity. Both can be tested using Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) methods.
 Convergent validity is based on the principle that a variable should be highly correlated with itself. The criteria that must be met are the AVE and Cumminality values are above 0.5 and the reliability test above 0.6 (Abdillah, 2015) in (Sitio, 2021).

4. Results

4.1. Evaluation of Measurement Model (outer model)
Evaluation of the measurement model is carried out with several criteria including the following:

1) Composite reliability
Composite reliability is done by looking at the output of the view latent variable coefficients. From this output, the criteria are seen from two things, namely composite reliability, and Cronbach's alpha. The value of composite reliability and Cronbach's alpha is declared reliable and valid if it is > 0.70. If a construct has fulfilled these two criteria, it can be said that the construct is reliable or has consistency in the research instrument. The value of composite reliability in this study can be seen in the table 1.

 Table 1. Value of Composite Reliability and Cronbach's Alpha

<table>
<thead>
<tr>
<th>Composite Reliability</th>
<th>Cronbach's Alpha</th>
<th>Composite Reliability</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Anxiety</td>
<td>0.788</td>
<td>0.843</td>
<td>Reliable</td>
</tr>
<tr>
<td>Computer Attitude</td>
<td>0.841</td>
<td>0.893</td>
<td>Reliable</td>
</tr>
<tr>
<td>Perceived Usefullness</td>
<td>0.843</td>
<td>0.889</td>
<td>Reliable</td>
</tr>
<tr>
<td>Perceived Ease of Use</td>
<td>0.798</td>
<td>0.856</td>
<td>Reliable</td>
</tr>
<tr>
<td>Interest</td>
<td>0.867</td>
<td>0.901</td>
<td>Reliable</td>
</tr>
</tbody>
</table>

The results of the composite reliability test above showed that all latent variable values have Composite Reliability values > 0.7.

2) Convergent Validity
Convergent validity can be discovered by looking at the Average Variance Extracted (AVE) value and the indicator is considered to have good convergent validity if it has an Average Variance Extracted (AVE) value of more than 0.5. The final value of Average Variance Extracted (AVE) can be seen in the table 2.

 Table 2. Convergent Validity Value

<table>
<thead>
<tr>
<th>Convergent Validity</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Anxiety</td>
<td>0.914</td>
</tr>
<tr>
<td>Computer Attitude</td>
<td>0.883</td>
</tr>
<tr>
<td>Perceived Usefullness</td>
<td>0.847</td>
</tr>
<tr>
<td>Perceived Ease of Use</td>
<td>0.872</td>
</tr>
<tr>
<td>Interest</td>
<td>0.865</td>
</tr>
</tbody>
</table>

3) Discriminant Validity
Discriminant Validity is done by looking at the cross-loading value of the construct measurement. The cross-loading value shows the magnitude of the correlation between each construct and its indicators and indicators from other block constructs. A measurement model has good discriminant validity if the correlation between the construct and its indicators is higher than the correlation with indicators from other block constructs. After processing the data using Smart PLS 3.0, the cross-loading results can be shown in the table 3.
Based on the table 3, the value of cross-loading showed above 0.7. This fulfills that latent variable can predict indicators better than other latent variables.

4) **Average Variance Extracted (AVE)**

Another method to assess discriminant validity is to compare the value of square root of average variance extracted (AVE) of each construct with correlation between constructs with other constructs in the model. If the square root value of AVE for each construct is greater than the correlation value between constructs and other constructs in the model, then it has a good discriminant validity value. The results of the AVE test can be seen in the table 4.

Table 4. Average Variance Extracted (AVE) Value

<table>
<thead>
<tr>
<th>Construct</th>
<th>Average Variance Extracted (AVE)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Anxiety</td>
<td>0.823</td>
<td>Valid</td>
</tr>
<tr>
<td>Computer Attitude</td>
<td>0.676</td>
<td>Valid</td>
</tr>
<tr>
<td>Perceived Usefullness</td>
<td>0.601</td>
<td>Valid</td>
</tr>
<tr>
<td>Perceived Ease of Use</td>
<td>0.500</td>
<td>Valid</td>
</tr>
<tr>
<td>Interest</td>
<td>0.615</td>
<td>Valid</td>
</tr>
</tbody>
</table>

The value of Average Variance Extracted (AVE) in the table 4 for all variables is > 0.50 therefore it can be said that each indicator that has been measured had been able to reflect their respective variables reasonably.

4.2. **Structural Model Evaluation (inner model)**

After testing the measurement model (outer model), the next step is testing the structural model (inner model) which is to find out whether the hypothesis can be accepted or rejected. This study will use a significant value (α) of 0.05 or 5%.

Table 5. Inner P value

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Original Sample (0)</th>
<th>Sample Mean (M)</th>
<th>Standard Deviation</th>
<th>T Statistics (0/STDEV)</th>
<th>P – Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Anxiety \rightarrow Minat</td>
<td>0.011</td>
<td>0.014</td>
<td>0.023</td>
<td>0.488</td>
<td>0.626</td>
</tr>
<tr>
<td>Computer Attitude \rightarrow Minat</td>
<td>0.875</td>
<td>0.876</td>
<td>0.030</td>
<td>5.316</td>
<td>0.000</td>
</tr>
<tr>
<td>Perceived Usefullness \rightarrow Minat</td>
<td>-0.613</td>
<td>-0.154</td>
<td>0.031</td>
<td>6.242</td>
<td>0.000</td>
</tr>
<tr>
<td>Perceived Ease of Use \rightarrow Minat</td>
<td>0.259</td>
<td>0.250</td>
<td>0.043</td>
<td>29.902</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The relationship between variables can be considered significant if the P value is smaller than the predetermined significant value ($P < 0.05$). The table 5 shows that the variable the ease of using Computer Anxiety on interests is not mutually significant with a value above 0.05 (0.626), the rest are mutually significant with value below 0.05. The value of testing this research hypothesis can be shown in the table 5 and for the results of this research model is illustrated in the figure 2.
Figure 2. The results of this research model

The first hypothesis examines whether computer anxiety has a positive effect on interest. The test results show the beta coefficient of Computer Anxiety on interest is 0.011 and the t-statistic is 0.488. From these results, it is stated that the t-statistic is not significant because 0.011 < 1.97 with p-value 0.626 > 0.05 therefore the first hypothesis is rejected. This proven that computer anxiety has no significant effect on interest. It can be deduced that the higher the computer anxiety, the more difficult it will be to use technology. This is in line with research conducted by (Handayani et al., 2022), (Maharani, 2019). However, this research is not in line with what was done by (Widiyasari & Achadiyah, 2019).

The second hypothesis examines whether computer attitude has a positive effect on interest. The test results showed the beta coefficient of Computer attitude towards interest is 0.875 and the t-statistic is 5.316. From these results, it is stated that the t-statistic is significant because 0.875 < 1.97 with p-value 0.000 > 0.05 so that the second hypothesis is accepted. This proves that computer attitude has a significant effect on interest. Thus, someone with a high level of pessimism and intimidation has low computer skills, consequently interest in using also lowered. This is in line with research conducted by (Adi & Yanti, 2018). However, this research is not in line with what was done by (Amirudin & Suhartini, 2021), (Hasanah, 2020).

The third hypothesis tests whether perceived usefulness has a positive effect on interest. The test results showed the value of the beta coefficient perceived usefulness to interest is -0.613 and t-statistic is 6.242. From this result it is stated that t-statistic is significant because 1.97 > – 0.613 with p-value 0.000 <0.05 so that the third hypothesis is accepted. This proves that perceived usefulness has a significant effect on interest. In conclusion, if one believes that the system is useful, the interest in using it will be higher and vice versa if one believes that the system is useless, the interest in using it will be lower. This is in line with research conducted by (Latifah & Heny, 2021), (Wardhana, 2019), (Maharani, 2020). However, this research is not in line with what was done by (Udayana & Ramadhan, 2019).

The fourth hypothesis tests whether perceived ease of use has a positive effect on interest. The test results show the value of the beta coefficient of perceived ease of use on interest is 0.259 and the t-statistic is equal to 29,902. Proves that perceived ease of use has a significant effect on interest. The conclusion explained that users who have interest in the need and continue to use it will directly feel the benefits however if it is not useful, there will be a tendency to not be interested in using the technology offered. This is in line with research conducted by (Nurmalia & Wijaya, 2018), (Wiratama & Sulindawati, 2021), (Priambodo & Prabawani, 2016). However, this research is not in line with what was done by (Tanujaya, 2020).
5. Conclusion

Users that are pessimistic then will have lower expertise in using computers is also low, therefore their interest in using it will also be low. However, if one believes that the system is beneficial then the higher interest to use it. On contrary, if one believes the system is less useful, then the interest to utilize it will be low. To minimize anxiety from technological developments, good communication is needed so that there is a common perception.

References

309