Comparative Performance Analysis of Two Clustering Methods for Grouping Indonesian Provinces Based on Forest Area Size
Viewed = 0 time(s)
Abstract
This study aims to compare the performance of two clustering algorithms, K-Means Clustering and K-Medoids Clustering in grouping Indonesian provinces based on forest area by type. The optimal number of clusters was determined using the minimum Davies–Bouldin Index (DBI), while cluster performance was evaluated using the Silhouette Coefficient. Clustering, as one of the key techniques in data mining, automatically classifies data into several groups with similar characteristics. The results reveal differences in the number of clusters produced by the two algorithms. The K-Means method generated four clusters, indicated by its lowest DBI value of 0.515, whereas the K-Medoids method produced three clusters, with a minimum DBI value of 0.559. The clustering performance of K-Means resulted in a Silhouette Coefficient of 0.610, while K-Medoids achieved a higher value of 0.644. Based on these results, the K-Medoids Clustering method with three clusters, demonstrates superior performance in analyzing the grouping of Indonesian provinces by forest area type.
References
A. Fatkhudin, A. Khambali, F. A. Artanto, N. A. Putra Zade, dan U. Muhammadiyah Pekajangan Pekalongan, “Implementasi Algoritma Clustering K-Means Dalam Pengelompokan Mahasiswa Studi Kasus (Prodi Manajemen Informatika),” J. Minfo Polgan, vol. 12, no. 2, hal. 777–783, 2023, [Daring]. Tersedia pada: https://doi.org/10.33395/jmp.v12i2.12494
A. Akram, N. Risal, D. Maryani, N. Fadillah, A. Alviadi, dan N. Risal, “Implementasi K- Means Clustering Untuk Rekomendasi Kelas Unggulan di SMK 1 Teknologi dan Rekayasa Mimika,” JESSI J. Embed. Syst. Secur. Intell. Syst., vol. 5, no. 3, hal. 255–261, 2024.
A. R. Pratama, B. Maulana, R. D. Rianda, dan S. El Hasyim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Penjualan Video Game di Amerika Utara,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 2, hal. 111–118, 2023.
Badan Pusat Statistik, “Angka Deforestasi (Netto) Indonesia di Dalam dan di Luar Kawasan Hutan Tahun 2013-2022 (Ha/Th),” Badan Pusat Statistik. [Daring]. Tersedia pada: https://www.bps.go.id/id/statistics-table/1/MjA4MSMx/angka-deforestasi--netto--indonesia-di-dalam-dan-di-luar-kawasan-hutan-tahun-2013-2022--ha-th-.html
Bakri, R.; Sobirov, B.; Astuti, N.P.; Ahmar, A.S.; Singh, P.K. A New Framework for Dynamic Educational Marketing Segmentation in Student Recruitment: Optimizing Fuzzy C-Means with Metaheuristic Techniques. J. RESTI (Rekayasa Sist. dan Teknol. Informasi) 2025, 9, 659–669, https://doi.org/10.29207/resti.v9i3.6515.
C. Sukmayadi, A. Primajaya, dan I. Maulana, “Penerapan Algoritma K-Medoids dalam Menentukan Daerah Rawan Banjir di Kabupaten Karawang,” INFORMAL Informatics J., vol. 6, no. 3, hal. 187, 2021, doi: 10.19184/isj.v6i3.25423.
D. T. Dinh, T. Fujinami, dan V. N. Huynh, “Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient,” Commun. Comput. Inf. Sci., vol. 1103 CCIS, hal. 1–17, 2019, doi: 10.1007/978-981-15-1209-4_1.
Faturrahman, S. Hariani, dan R. HariniKusumawati, “Evaluasi Clustering K-Means dan K-Medoid pada Persebaran Covid-19 di Indonesia dengan Metode Davies-Bouldin Index (DBI),” J. Mnemon., vol. 6, no. 2, hal. 117–128, 2023.
H. M. Ilmi, M. Kurniawan, U. Al Faruq, dan R. R. Muhima, “Comparison of K-Means and K-Medoids for Hotspot Data Clustering on the Island of Kalimantan,” J. SimanteC, vol. 13, no. 1, hal. 33–40, 2024.
Hafid, H., Meliyana, S. M., Muthahharah, I., & Mar’ah, Z. (2025). Implementation K-Medoids Algorithm for Clustering Indonesian Provinces by Poverty and Economic Indicators. Quantitative Economics and Management Studies, 6(2), 219-225. https://doi.org/10.35877/454RI.qems3940
Hafid, H., & Meliyana, S. M. (2024). Implementation of K-Median Algorithm for the Regencies Clustering in South Sulawesi Provinve Based on Food Commodity Yields. Journal of Mathematics, Computation and Statistics, 7(2), 283-294. 10.35580/jmathcos.v7i2.3674
I. M. K. Karo, S. Dewi, Mardiana, F. Ramadhani, dan P. Harliana, “K-means and K-medoids Algorithm Comparison for Clustering Forest Fire Location in Indonesia,” J. ECTIPE Electron. Control. Telecommun. Information, Power Eng., vol. 10, no. 1, hal. 86–94, 2023, doi: 10.33019/jurnalecotipe.v10i1.3896.
L. D. Shafitri, Y. Prasetyo, dan Hani’ah, “Analisis Deforestasi Hutan di Provinsi Riau Dengan Metode Polarimetrik dalam Pengindraan Jauh,” J. Geod. Undip, vol. 7, 2018.
M. Noer dan M. Dimyati, “Systematic Literature Review: Pola Spasial, Tren dan Dinamika Deforestasi Hutan dalam Prespektif Penginderaan Jauh,” Geogr. J. Kajian, Penelit. dan Pengemb. Pendidik., vol. 12, no. 1, hal. 412–423, 2024.
Mar'ah, Z., Hafid, H., & Meliyana, S. M. (2025). Epidemiologicalmapping of Tuberculosis in South Sulawesi Using Local Indicators of Spatial Association (LISA) and K-Means Clustering. SAINSMAT Jurnal Ilmiah Pengetahuan Alam, 14(01), 1-11. https://doi.org/10.35580/sainsmat141665022025
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 1, hal. 46–56, 2024, doi: 10.58602/jima-ilkom.v3i1.26.
R. Qomaria, “Pengelompokan Kasus Deforestasi di Indonesia Menggunakan Metode K-Means,” B.S. thesis, Dept. Mathematics., UIN Sunan Ampel Surabaya., Surabaya, Indonesia, 2024.
Srikandi dan S. Yurinanda, “Analisis Cluster Program Anggaran Untuk Meningkatkan Efisiensi dengan Metode K-Medoids di Sekretariat DPRD Provinsi Jambi,” STATMAT (Jurnal Stat. dan Mat., vol. 7, no. 2, hal. 180–200, 2025.
Copyright (c) 2025 Sitti Masyitah Meliyana, Anugra S.A. Dunggio, Subhan Muhammad, Abdul Rahman, R. Rusli

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
https://doi.org/10.35877/454RI.daengku4439


